{"title":"用移动传感器网络跟踪机动目标的蒙特卡罗算法","authors":"J. Míguez, Antonio Artés-Rodríguez","doi":"10.1109/CAMAP.2005.1574191","DOIUrl":null,"url":null,"abstract":"We address the problem of tracking a maneuvering target that moves over a two-dimensional region using a network of mobile binary sensors. The transmission of binary decisions (presence or absence of the target within the sensor range) is advantageous because it reduces energy consumption considerably. Also, the use of mobile sensors allows tracking the target over a large area with only a limited number of devices. We introduce two algorithms, based on the sequential Monte Carlo methodology, that track the target and the sensors (whose position is also unknown) jointly. The performance of the trackers is illustrated by means of computer simulations.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Monte Carlo algorithms for tracking a maneuvering target using a network of mobile sensors\",\"authors\":\"J. Míguez, Antonio Artés-Rodríguez\",\"doi\":\"10.1109/CAMAP.2005.1574191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of tracking a maneuvering target that moves over a two-dimensional region using a network of mobile binary sensors. The transmission of binary decisions (presence or absence of the target within the sensor range) is advantageous because it reduces energy consumption considerably. Also, the use of mobile sensors allows tracking the target over a large area with only a limited number of devices. We introduce two algorithms, based on the sequential Monte Carlo methodology, that track the target and the sensors (whose position is also unknown) jointly. The performance of the trackers is illustrated by means of computer simulations.\",\"PeriodicalId\":281761,\"journal\":{\"name\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAP.2005.1574191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monte Carlo algorithms for tracking a maneuvering target using a network of mobile sensors
We address the problem of tracking a maneuvering target that moves over a two-dimensional region using a network of mobile binary sensors. The transmission of binary decisions (presence or absence of the target within the sensor range) is advantageous because it reduces energy consumption considerably. Also, the use of mobile sensors allows tracking the target over a large area with only a limited number of devices. We introduce two algorithms, based on the sequential Monte Carlo methodology, that track the target and the sensors (whose position is also unknown) jointly. The performance of the trackers is illustrated by means of computer simulations.