未知光照下的秩约束识别

S. Zhou, R. Chellappa
{"title":"未知光照下的秩约束识别","authors":"S. Zhou, R. Chellappa","doi":"10.1109/AMFG.2003.1240818","DOIUrl":null,"url":null,"abstract":"Recognition under illumination variations is a challenging problem. The key is to successfully separate the illumination source from the observed appearance. Once separated, what remains is invariant to illuminant and appropriate for recognition. Most current efforts employ a Lambertian reflectance model with varying albedo field ignoring both attached and cast shadows, but restrict themselves by using object-specific samples, which undesirably deprives them of recognizing new objects not in the training samples. Using rank constraints on the albedo and the surface normal, we accomplish illumination separation in a more general setting, e.g., with class-specific samples via a factorization approach. In addition, we handle shadows (both attached and cast ones) by treating them as missing values, and resolve the ambiguities in the factorization method by enforcing integrability. As far as recognition is concerned, a bootstrap set which is just a collection of two-dimensional image observations can be utilized to avoid the explicit requirement that three-dimensional information be available. Our approaches produce good recognition results as shown in our experiments using the PIE database.","PeriodicalId":388409,"journal":{"name":"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)","volume":"2007 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Rank constrained recognition under unknown illuminations\",\"authors\":\"S. Zhou, R. Chellappa\",\"doi\":\"10.1109/AMFG.2003.1240818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition under illumination variations is a challenging problem. The key is to successfully separate the illumination source from the observed appearance. Once separated, what remains is invariant to illuminant and appropriate for recognition. Most current efforts employ a Lambertian reflectance model with varying albedo field ignoring both attached and cast shadows, but restrict themselves by using object-specific samples, which undesirably deprives them of recognizing new objects not in the training samples. Using rank constraints on the albedo and the surface normal, we accomplish illumination separation in a more general setting, e.g., with class-specific samples via a factorization approach. In addition, we handle shadows (both attached and cast ones) by treating them as missing values, and resolve the ambiguities in the factorization method by enforcing integrability. As far as recognition is concerned, a bootstrap set which is just a collection of two-dimensional image observations can be utilized to avoid the explicit requirement that three-dimensional information be available. Our approaches produce good recognition results as shown in our experiments using the PIE database.\",\"PeriodicalId\":388409,\"journal\":{\"name\":\"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)\",\"volume\":\"2007 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMFG.2003.1240818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMFG.2003.1240818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

光照变化下的识别是一个具有挑战性的问题。关键是成功地将照明源与观察到的外观分离开来。一旦分离,剩下的是光源不变的,适合识别。目前的大多数研究都采用了具有不同反照率场的兰伯特反射模型,忽略了附着和投射阴影,但由于使用对象特定的样本而受到限制,这使得它们无法识别不在训练样本中的新对象。使用反照率和表面法线的等级约束,我们在更一般的设置中完成光照分离,例如,通过因式分解方法使用特定类别的样本。此外,我们通过将阴影(附加阴影和投射阴影)视为缺失值来处理阴影,并通过增强可积性来解决因式分解方法中的模糊性。就识别而言,可以使用一个仅仅是二维图像观测值的集合的bootstrap集合,从而避免明确要求具有三维信息。我们的方法产生了良好的识别结果,如我们使用PIE数据库的实验所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rank constrained recognition under unknown illuminations
Recognition under illumination variations is a challenging problem. The key is to successfully separate the illumination source from the observed appearance. Once separated, what remains is invariant to illuminant and appropriate for recognition. Most current efforts employ a Lambertian reflectance model with varying albedo field ignoring both attached and cast shadows, but restrict themselves by using object-specific samples, which undesirably deprives them of recognizing new objects not in the training samples. Using rank constraints on the albedo and the surface normal, we accomplish illumination separation in a more general setting, e.g., with class-specific samples via a factorization approach. In addition, we handle shadows (both attached and cast ones) by treating them as missing values, and resolve the ambiguities in the factorization method by enforcing integrability. As far as recognition is concerned, a bootstrap set which is just a collection of two-dimensional image observations can be utilized to avoid the explicit requirement that three-dimensional information be available. Our approaches produce good recognition results as shown in our experiments using the PIE database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信