进化算法在车载自组织网络中的实现

M. Fahad, Farhan Aadil, Sadia Ejaz, Asad Ali
{"title":"进化算法在车载自组织网络中的实现","authors":"M. Fahad, Farhan Aadil, Sadia Ejaz, Asad Ali","doi":"10.1109/INTELLISYS.2017.8324281","DOIUrl":null,"url":null,"abstract":"Among many other sub-types, one sub-type of ad hoc network is Vehicular ad hoc Network (VANET). VANET can be further categorized in sub-domains like Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), Vehicle to pedestrian or other equipment (V2X) and Hybrid (V2V+V2I+V2X). V2V communication is the primary focus of this paper. Different methodologies are available in the literature for optimization of V2V communication. Clustering is one of them, in clustering vehicles, the same vicinity are grouped together for efficient communication. Different evolutionary algorithms for clustering already have been implemented to route information among nodes. Two evolutionary algorithms are applied for optimizing communication among the vehicles and the clustering problem in the VANETs. The bio inspired evolutionary algorithms are Comprehensive Learning Particle Swarm Optimization (CLPSO) and Multi-Objective Particle Swarm Optimization (MOPSO). After implementation, comparison for the mentioned algorithms is used to depict the results. The experimental results show that CLPSO is providing better results than MOPSO.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Implementation of evolutionary algorithms in vehicular ad-hoc network for cluster optimization\",\"authors\":\"M. Fahad, Farhan Aadil, Sadia Ejaz, Asad Ali\",\"doi\":\"10.1109/INTELLISYS.2017.8324281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among many other sub-types, one sub-type of ad hoc network is Vehicular ad hoc Network (VANET). VANET can be further categorized in sub-domains like Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), Vehicle to pedestrian or other equipment (V2X) and Hybrid (V2V+V2I+V2X). V2V communication is the primary focus of this paper. Different methodologies are available in the literature for optimization of V2V communication. Clustering is one of them, in clustering vehicles, the same vicinity are grouped together for efficient communication. Different evolutionary algorithms for clustering already have been implemented to route information among nodes. Two evolutionary algorithms are applied for optimizing communication among the vehicles and the clustering problem in the VANETs. The bio inspired evolutionary algorithms are Comprehensive Learning Particle Swarm Optimization (CLPSO) and Multi-Objective Particle Swarm Optimization (MOPSO). After implementation, comparison for the mentioned algorithms is used to depict the results. The experimental results show that CLPSO is providing better results than MOPSO.\",\"PeriodicalId\":131825,\"journal\":{\"name\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Intelligent Systems Conference (IntelliSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELLISYS.2017.8324281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在许多其他子类型中,自组织网络的一个子类型是车辆自组织网络(VANET)。VANET可以进一步分为车辆对基础设施(V2I)、车辆对车辆(V2V)、车辆对行人或其他设备(V2X)和混合动力(V2V+V2I+V2X)等子领域。V2V通信是本文的主要研究重点。文献中有不同的方法可用于优化V2V通信。聚类就是其中的一种,在聚类车辆中,同一附近的车辆被聚在一起进行高效的通信。为了在节点间路由信息,已经实现了不同的聚类进化算法。采用两种进化算法来优化车辆间的通信和VANETs中的聚类问题。生物启发的进化算法是综合学习粒子群优化(CLPSO)和多目标粒子群优化(MOPSO)。实现后,通过对上述算法的比较来描述结果。实验结果表明,CLPSO比MOPSO具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of evolutionary algorithms in vehicular ad-hoc network for cluster optimization
Among many other sub-types, one sub-type of ad hoc network is Vehicular ad hoc Network (VANET). VANET can be further categorized in sub-domains like Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), Vehicle to pedestrian or other equipment (V2X) and Hybrid (V2V+V2I+V2X). V2V communication is the primary focus of this paper. Different methodologies are available in the literature for optimization of V2V communication. Clustering is one of them, in clustering vehicles, the same vicinity are grouped together for efficient communication. Different evolutionary algorithms for clustering already have been implemented to route information among nodes. Two evolutionary algorithms are applied for optimizing communication among the vehicles and the clustering problem in the VANETs. The bio inspired evolutionary algorithms are Comprehensive Learning Particle Swarm Optimization (CLPSO) and Multi-Objective Particle Swarm Optimization (MOPSO). After implementation, comparison for the mentioned algorithms is used to depict the results. The experimental results show that CLPSO is providing better results than MOPSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信