{"title":"Krein弦的正、逆动力学问题。用点质量密度近似","authors":"A. Mikhaylov, V. Mikhaylov","doi":"10.1109/DD46733.2019.9016622","DOIUrl":null,"url":null,"abstract":"We consider a dynamic inverse problem for a dynamical system describing propagation of waves in a Krein string. We reduce the dynamical system to the integral equation and consider the important special case when the density of a string is given by a finite number of point masses distributed on the interval. We derive the Krein-type equation and solve the dynamic inverse problem in this particular case. We also consider the approximation of constant density by point-mass densities uniformly distributed on the interval and the effect of appearing of the finite speed of a wave propagation in the dynamical system.","PeriodicalId":319575,"journal":{"name":"2019 Days on Diffraction (DD)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward and inverse dynamic problems for a Krein string. Approximation by point-mass densities\",\"authors\":\"A. Mikhaylov, V. Mikhaylov\",\"doi\":\"10.1109/DD46733.2019.9016622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a dynamic inverse problem for a dynamical system describing propagation of waves in a Krein string. We reduce the dynamical system to the integral equation and consider the important special case when the density of a string is given by a finite number of point masses distributed on the interval. We derive the Krein-type equation and solve the dynamic inverse problem in this particular case. We also consider the approximation of constant density by point-mass densities uniformly distributed on the interval and the effect of appearing of the finite speed of a wave propagation in the dynamical system.\",\"PeriodicalId\":319575,\"journal\":{\"name\":\"2019 Days on Diffraction (DD)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD46733.2019.9016622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD46733.2019.9016622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forward and inverse dynamic problems for a Krein string. Approximation by point-mass densities
We consider a dynamic inverse problem for a dynamical system describing propagation of waves in a Krein string. We reduce the dynamical system to the integral equation and consider the important special case when the density of a string is given by a finite number of point masses distributed on the interval. We derive the Krein-type equation and solve the dynamic inverse problem in this particular case. We also consider the approximation of constant density by point-mass densities uniformly distributed on the interval and the effect of appearing of the finite speed of a wave propagation in the dynamical system.