基于自发语言数据的阿尔茨海默氏型痴呆的纵向监测和检测

S. Luz
{"title":"基于自发语言数据的阿尔茨海默氏型痴呆的纵向监测和检测","authors":"S. Luz","doi":"10.1109/CBMS.2017.41","DOIUrl":null,"url":null,"abstract":"A method for detection of Alzheimers type dementia though analysis of vocalisation features that can be easily extracted from spontaneous speech is presented. Unlike existing approaches, this method does not rely on transcriptions of the patients speech. Tests of the proposed method on a data set of spontaneous speech recordings of Alzheimers patients (n=214) and elderly controls (n=184) show that accuracy of 68% can be achieved with a Bayesian classifier operating on features extracted through simple algorithms for voice activity detection and speech rate tracking.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Longitudinal Monitoring and Detection of Alzheimer's Type Dementia from Spontaneous Speech Data\",\"authors\":\"S. Luz\",\"doi\":\"10.1109/CBMS.2017.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for detection of Alzheimers type dementia though analysis of vocalisation features that can be easily extracted from spontaneous speech is presented. Unlike existing approaches, this method does not rely on transcriptions of the patients speech. Tests of the proposed method on a data set of spontaneous speech recordings of Alzheimers patients (n=214) and elderly controls (n=184) show that accuracy of 68% can be achieved with a Bayesian classifier operating on features extracted through simple algorithms for voice activity detection and speech rate tracking.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

提出了一种通过分析从自发言语中提取的发声特征来检测阿尔茨海默型痴呆症的方法。与现有的方法不同,这种方法不依赖于患者语音的转录。在阿尔茨海默病患者(n=214)和老年人对照(n=184)的自发语音记录数据集上进行的测试表明,贝叶斯分类器对通过简单的语音活动检测和语音速率跟踪算法提取的特征进行操作,准确率可以达到68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longitudinal Monitoring and Detection of Alzheimer's Type Dementia from Spontaneous Speech Data
A method for detection of Alzheimers type dementia though analysis of vocalisation features that can be easily extracted from spontaneous speech is presented. Unlike existing approaches, this method does not rely on transcriptions of the patients speech. Tests of the proposed method on a data set of spontaneous speech recordings of Alzheimers patients (n=214) and elderly controls (n=184) show that accuracy of 68% can be achieved with a Bayesian classifier operating on features extracted through simple algorithms for voice activity detection and speech rate tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信