混合神经网络与元启发式方法在学生成绩分类中的比较研究

Gawalee Phatai, Tidarat Luangrungruang
{"title":"混合神经网络与元启发式方法在学生成绩分类中的比较研究","authors":"Gawalee Phatai, Tidarat Luangrungruang","doi":"10.1109/ICIET56899.2023.10111495","DOIUrl":null,"url":null,"abstract":"This study investigated the use of an neural network (NN) and metaheuristic algorithms for predictions using the Higher Education Students Performance Evaluation Dataset. An NN with the backpropagation (BP) algorithm is a widely accepted machine learning method that uses past data for prediction and classification, while metaheuristic algorithms can be used to find better subsets of input variables to import into the NN, hence enabling more accurate predictions by reducing errors. The imported data were chosen from the UCI Machine Learning Repository. MSE and MAE used to evaluate the hybrid intelligence approach with respect to reducing prediction errors. The experimental results showed that optimal efficiency was obtained using an NN with the student psychology-based optimization (SPBO) model, while competitive metaheuristic algorithms.","PeriodicalId":332586,"journal":{"name":"2023 11th International Conference on Information and Education Technology (ICIET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Hybrid Neural Network with Metaheuristics for Student Performance Classification\",\"authors\":\"Gawalee Phatai, Tidarat Luangrungruang\",\"doi\":\"10.1109/ICIET56899.2023.10111495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the use of an neural network (NN) and metaheuristic algorithms for predictions using the Higher Education Students Performance Evaluation Dataset. An NN with the backpropagation (BP) algorithm is a widely accepted machine learning method that uses past data for prediction and classification, while metaheuristic algorithms can be used to find better subsets of input variables to import into the NN, hence enabling more accurate predictions by reducing errors. The imported data were chosen from the UCI Machine Learning Repository. MSE and MAE used to evaluate the hybrid intelligence approach with respect to reducing prediction errors. The experimental results showed that optimal efficiency was obtained using an NN with the student psychology-based optimization (SPBO) model, while competitive metaheuristic algorithms.\",\"PeriodicalId\":332586,\"journal\":{\"name\":\"2023 11th International Conference on Information and Education Technology (ICIET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International Conference on Information and Education Technology (ICIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIET56899.2023.10111495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Conference on Information and Education Technology (ICIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIET56899.2023.10111495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了使用神经网络(NN)和元启发式算法使用高等教育学生绩效评估数据集进行预测。带有反向传播(BP)算法的神经网络是一种被广泛接受的机器学习方法,它使用过去的数据进行预测和分类,而元启发式算法可以用来找到更好的输入变量子集导入神经网络,从而通过减少误差实现更准确的预测。导入的数据从UCI机器学习存储库中选择。MSE和MAE用于评估混合智能方法在减少预测误差方面的效果。实验结果表明,基于学生心理优化(SPBO)模型的神经网络效率最高,而竞争元启发式算法效率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Hybrid Neural Network with Metaheuristics for Student Performance Classification
This study investigated the use of an neural network (NN) and metaheuristic algorithms for predictions using the Higher Education Students Performance Evaluation Dataset. An NN with the backpropagation (BP) algorithm is a widely accepted machine learning method that uses past data for prediction and classification, while metaheuristic algorithms can be used to find better subsets of input variables to import into the NN, hence enabling more accurate predictions by reducing errors. The imported data were chosen from the UCI Machine Learning Repository. MSE and MAE used to evaluate the hybrid intelligence approach with respect to reducing prediction errors. The experimental results showed that optimal efficiency was obtained using an NN with the student psychology-based optimization (SPBO) model, while competitive metaheuristic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信