推荐系统中的数据质量问题

Oren Sar Shalom, S. Berkovsky, Royi Ronen, Elad Ziklik, A. Amir
{"title":"推荐系统中的数据质量问题","authors":"Oren Sar Shalom, S. Berkovsky, Royi Ronen, Elad Ziklik, A. Amir","doi":"10.1145/2792838.2799670","DOIUrl":null,"url":null,"abstract":"Although data quality has been recognized as an important factor in the broad information systems research, it has received little attention in recommender systems. Data quality matters are typically addressed in recommenders by ad-hoc cleansing methods, which prune noisy or unreliable records from the data. However, the setting of the cleansing parameters is often done arbitrarily, without thorough consideration of the data characteristics. In this work, we turn to two central data quality problems in recommender systems: sparsity and redundancy. We devise models for setting data-dependent thresholds and sampling levels, and evaluate these using a collection of public and proprietary datasets. We observe that the models accurately predict data cleansing parameters, while having minor effect on the accuracy of the generated recommendations.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Data Quality Matters in Recommender Systems\",\"authors\":\"Oren Sar Shalom, S. Berkovsky, Royi Ronen, Elad Ziklik, A. Amir\",\"doi\":\"10.1145/2792838.2799670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although data quality has been recognized as an important factor in the broad information systems research, it has received little attention in recommender systems. Data quality matters are typically addressed in recommenders by ad-hoc cleansing methods, which prune noisy or unreliable records from the data. However, the setting of the cleansing parameters is often done arbitrarily, without thorough consideration of the data characteristics. In this work, we turn to two central data quality problems in recommender systems: sparsity and redundancy. We devise models for setting data-dependent thresholds and sampling levels, and evaluate these using a collection of public and proprietary datasets. We observe that the models accurately predict data cleansing parameters, while having minor effect on the accuracy of the generated recommendations.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2799670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

虽然数据质量在广泛的信息系统研究中被认为是一个重要的因素,但在推荐系统中却很少受到重视。数据质量问题通常在推荐程序中通过特别的清理方法来解决,这些方法从数据中删除噪声或不可靠的记录。但是,清理参数的设置通常是随意的,没有充分考虑数据特征。在这项工作中,我们转向推荐系统中的两个中心数据质量问题:稀疏性和冗余。我们设计了用于设置数据依赖阈值和采样水平的模型,并使用公共和专有数据集的集合对这些模型进行评估。我们观察到,这些模型准确地预测了数据清理参数,而对生成的推荐的准确性影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Quality Matters in Recommender Systems
Although data quality has been recognized as an important factor in the broad information systems research, it has received little attention in recommender systems. Data quality matters are typically addressed in recommenders by ad-hoc cleansing methods, which prune noisy or unreliable records from the data. However, the setting of the cleansing parameters is often done arbitrarily, without thorough consideration of the data characteristics. In this work, we turn to two central data quality problems in recommender systems: sparsity and redundancy. We devise models for setting data-dependent thresholds and sampling levels, and evaluate these using a collection of public and proprietary datasets. We observe that the models accurately predict data cleansing parameters, while having minor effect on the accuracy of the generated recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信