循环加载条件下韧性断裂的新模型

A. Remmal, S. Marie, J. Leblond
{"title":"循环加载条件下韧性断裂的新模型","authors":"A. Remmal, S. Marie, J. Leblond","doi":"10.1115/pvp2019-93836","DOIUrl":null,"url":null,"abstract":"\n Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called “ratcheting of the porosity” that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson’s classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work [6], the authors proposed a Gurson-type “layer model” better fit than Gurson’s original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis is strictly applicable in the absence of elasticity. In this work, we make a proposal to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening: isotropic, kinematic and mixed, to better comply with the hypothesis made to derive the model.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Model for Ductile Rupture Under Cyclic Loading Conditions\",\"authors\":\"A. Remmal, S. Marie, J. Leblond\",\"doi\":\"10.1115/pvp2019-93836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called “ratcheting of the porosity” that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson’s classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work [6], the authors proposed a Gurson-type “layer model” better fit than Gurson’s original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis is strictly applicable in the absence of elasticity. In this work, we make a proposal to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening: isotropic, kinematic and mixed, to better comply with the hypothesis made to derive the model.\",\"PeriodicalId\":150804,\"journal\":{\"name\":\"Volume 3: Design and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Design and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

试验表明,循环加载条件下的延性破坏比单调加载条件下发生得更快。这种延性的降低可能是由一种叫做“孔隙率棘轮”的效应引起的,即随着循环次数的增加,每个循环期间的平均孔隙率持续增加。改进的微力学模拟证实了这一解释。这项工作还证明了Gurson关于多孔延性材料的经典模型不能预测孔隙度的棘轮。在最近的一项工作[6]中,作者利用顺序极限分析理论,提出了一种比Gurson原始模型更适合描述循环加载条件下延性行为的Gurson型“层模型”。模型预测结果与硬硬化材料微观力学模拟结果吻合较好。然而,孔隙度的棘轮是硬化和弹性共同作用的结果,顺序极限分析严格适用于没有弹性的情况。在这项工作中,我们建议通过定义一个新的客观应力率来考虑层模型中的弹性,从而准确地表达考虑弹性和塑性的孔隙率。通过将其预测结果与一些新的微观力学模拟结果进行比较来评估这一建议,这些模拟结果是对显示弹性和所有类型硬化的矩阵进行的:各向同性,运动学和混合,以更好地符合推导模型的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Model for Ductile Rupture Under Cyclic Loading Conditions
Experiments have shown that ductile failure occurs sooner under cyclic loading conditions than under monotone ones. This reduction of ductility probably arises from an effect called “ratcheting of the porosity” that consists of a continued increase of the mean porosity during each cycle with the number of cycles. Improved micromechanical simulations confirmed this interpretation. The same work also contained a proof that Gurson’s classical model for porous ductile materials does not predict any ratcheting of the porosity. In a recent work [6], the authors proposed a Gurson-type “layer model” better fit than Gurson’s original one for the description of the ductile behavior under cyclic loading conditions, using the theory of sequential limit analysis. A very good agreement was obtained between the model predictions and the results of the micromechanical simulations for a rigid-hardenable material. However, the ratcheting of the porosity is a consequence of both hardening and elasticity, and sequential limit analysis is strictly applicable in the absence of elasticity. In this work, we make a proposal to take into account elasticity in the layer model through the definition of a new objective stress rate leading to an accurate expression of the porosity rate accounting for both elasticity and plasticity. This proposal is assessed through comparison of its predictions with the results of some new micromechanical simulations performed for matrices exhibiting both elasticity and all types of hardening: isotropic, kinematic and mixed, to better comply with the hypothesis made to derive the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信