基于形状先验的对数极域表示对象提取

J. Senarathna, R. Rodrigo
{"title":"基于形状先验的对数极域表示对象提取","authors":"J. Senarathna, R. Rodrigo","doi":"10.1109/ICIINFS.2009.5429794","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of extracting objects in an image that conform to prior object shape knowledge. Major challenges include the judgment of scale and rotation parameters as well as tolerating occlusions and noise. We propose the use of a novel log polar domain mapping of the Cartesian domain image to efficiently and effectively overcome these. This method greatly simplifies rotation, scaling and provides an opportunity to incorporate a decision threshold. Whilst, the initial theoretical framework is developed on binary images, placement of this into the gray scale domain is achieved by incorporating a pre-processing binary segmentation step. A post processing Cartesian domain energy optimization is done to counteract discripancies caused at the initial stage. We demonstrate our results using several examples.","PeriodicalId":117199,"journal":{"name":"2009 International Conference on Industrial and Information Systems (ICIIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape prior based object extraction using a log-polar domian representation\",\"authors\":\"J. Senarathna, R. Rodrigo\",\"doi\":\"10.1109/ICIINFS.2009.5429794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of extracting objects in an image that conform to prior object shape knowledge. Major challenges include the judgment of scale and rotation parameters as well as tolerating occlusions and noise. We propose the use of a novel log polar domain mapping of the Cartesian domain image to efficiently and effectively overcome these. This method greatly simplifies rotation, scaling and provides an opportunity to incorporate a decision threshold. Whilst, the initial theoretical framework is developed on binary images, placement of this into the gray scale domain is achieved by incorporating a pre-processing binary segmentation step. A post processing Cartesian domain energy optimization is done to counteract discripancies caused at the initial stage. We demonstrate our results using several examples.\",\"PeriodicalId\":117199,\"journal\":{\"name\":\"2009 International Conference on Industrial and Information Systems (ICIIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Industrial and Information Systems (ICIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2009.5429794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2009.5429794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了从图像中提取符合先验物体形状知识的物体的问题。主要的挑战包括尺度和旋转参数的判断以及对遮挡和噪声的容忍。我们建议使用笛卡尔域图像的新颖对数极域映射来有效地克服这些问题。该方法极大地简化了旋转、缩放,并提供了合并决策阈值的机会。同时,最初的理论框架是在二值图像上开发的,将其放置到灰度域是通过合并预处理二值分割步骤来实现的。后处理的笛卡尔域能量优化,以抵消在初始阶段造成的差异。我们用几个例子来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape prior based object extraction using a log-polar domian representation
In this paper, we address the problem of extracting objects in an image that conform to prior object shape knowledge. Major challenges include the judgment of scale and rotation parameters as well as tolerating occlusions and noise. We propose the use of a novel log polar domain mapping of the Cartesian domain image to efficiently and effectively overcome these. This method greatly simplifies rotation, scaling and provides an opportunity to incorporate a decision threshold. Whilst, the initial theoretical framework is developed on binary images, placement of this into the gray scale domain is achieved by incorporating a pre-processing binary segmentation step. A post processing Cartesian domain energy optimization is done to counteract discripancies caused at the initial stage. We demonstrate our results using several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信