高效协方差跟踪的最陡下降

A. Tyagi, J.W. Davis, G. Potamianos
{"title":"高效协方差跟踪的最陡下降","authors":"A. Tyagi, J.W. Davis, G. Potamianos","doi":"10.1109/WMVC.2008.4544049","DOIUrl":null,"url":null,"abstract":"Recent research has advocated the use of a covariance matrix of image features for tracking objects instead of the conventional histogram object representation models used in popular algorithms. In this paper we extend the covariance tracker and propose efficient algorithms with an emphasis on both improving the tracking accuracy and reducing the execution time. The algorithms are compared to a baseline covariance tracker and the popular histogram-based mean shift tracker. Quantitative evaluations on a publicly available dataset demonstrate the efficacy of the presented methods. Our algorithms obtain significant speedups factors up to 330 while reducing the tracking errors by 86-90% relative to the baseline approach.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Steepest Descent For Efficient Covariance Tracking\",\"authors\":\"A. Tyagi, J.W. Davis, G. Potamianos\",\"doi\":\"10.1109/WMVC.2008.4544049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has advocated the use of a covariance matrix of image features for tracking objects instead of the conventional histogram object representation models used in popular algorithms. In this paper we extend the covariance tracker and propose efficient algorithms with an emphasis on both improving the tracking accuracy and reducing the execution time. The algorithms are compared to a baseline covariance tracker and the popular histogram-based mean shift tracker. Quantitative evaluations on a publicly available dataset demonstrate the efficacy of the presented methods. Our algorithms obtain significant speedups factors up to 330 while reducing the tracking errors by 86-90% relative to the baseline approach.\",\"PeriodicalId\":150666,\"journal\":{\"name\":\"2008 IEEE Workshop on Motion and video Computing\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Motion and video Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2008.4544049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

最近的研究提倡使用图像特征的协方差矩阵来跟踪对象,而不是流行算法中使用的传统直方图对象表示模型。在本文中,我们扩展了协方差跟踪器,并提出了有效的算法,重点是提高跟踪精度和减少执行时间。将算法与基线协方差跟踪器和流行的基于直方图的均值移位跟踪器进行了比较。对公开可用数据集的定量评估证明了所提出方法的有效性。我们的算法获得了显著的加速因子高达330,同时相对于基线方法减少了86-90%的跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steepest Descent For Efficient Covariance Tracking
Recent research has advocated the use of a covariance matrix of image features for tracking objects instead of the conventional histogram object representation models used in popular algorithms. In this paper we extend the covariance tracker and propose efficient algorithms with an emphasis on both improving the tracking accuracy and reducing the execution time. The algorithms are compared to a baseline covariance tracker and the popular histogram-based mean shift tracker. Quantitative evaluations on a publicly available dataset demonstrate the efficacy of the presented methods. Our algorithms obtain significant speedups factors up to 330 while reducing the tracking errors by 86-90% relative to the baseline approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信