基于R语言的大规模统计计算框架

Xia Xie, Jie Cao, Hai Jin, Xijiang Ke, Wenzhi Cao
{"title":"基于R语言的大规模统计计算框架","authors":"Xia Xie, Jie Cao, Hai Jin, Xijiang Ke, Wenzhi Cao","doi":"10.1109/APSCC.2012.74","DOIUrl":null,"url":null,"abstract":"Demands for highly scalable parallel data processing platforms is raising due to an explosion in the number of massive-scale data intensive applications both in industry and in sciences. Performing statistical computing over huge data repositories poses a significant challenge to existing statistical software and computational infrastructure. After analyzing various open source computational infrastructures and their programming paradigm APIs, the results have shown that most of them are JVM based, and their APIs are given as Java interfaces or abstract classes. This paper proposes a generic framework JR Bridge, which can integrate R and JVM-based computational infrastructures by generating Java APIs code wrapper around the native R code automatically and handling type conversion. Using this framework, we build a distributed statistical computing environment by integrating R with Hadoop. With the Hadoop Distributed File System plug in, it brings a way to store and access datasets with millions of objects. With MapReduce plug in, it brings a natural environment to code MapReduce algorithms in R. The experiment result shows JR Bridge scales linearly with the size of the datasets and thus provides a scalable solution for large-scale statistical computing in R.","PeriodicalId":256842,"journal":{"name":"2012 IEEE Asia-Pacific Services Computing Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"JRBridge: A Framework of Large-Scale Statistical Computing for R\",\"authors\":\"Xia Xie, Jie Cao, Hai Jin, Xijiang Ke, Wenzhi Cao\",\"doi\":\"10.1109/APSCC.2012.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demands for highly scalable parallel data processing platforms is raising due to an explosion in the number of massive-scale data intensive applications both in industry and in sciences. Performing statistical computing over huge data repositories poses a significant challenge to existing statistical software and computational infrastructure. After analyzing various open source computational infrastructures and their programming paradigm APIs, the results have shown that most of them are JVM based, and their APIs are given as Java interfaces or abstract classes. This paper proposes a generic framework JR Bridge, which can integrate R and JVM-based computational infrastructures by generating Java APIs code wrapper around the native R code automatically and handling type conversion. Using this framework, we build a distributed statistical computing environment by integrating R with Hadoop. With the Hadoop Distributed File System plug in, it brings a way to store and access datasets with millions of objects. With MapReduce plug in, it brings a natural environment to code MapReduce algorithms in R. The experiment result shows JR Bridge scales linearly with the size of the datasets and thus provides a scalable solution for large-scale statistical computing in R.\",\"PeriodicalId\":256842,\"journal\":{\"name\":\"2012 IEEE Asia-Pacific Services Computing Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Asia-Pacific Services Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSCC.2012.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Asia-Pacific Services Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSCC.2012.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于工业和科学领域大规模数据密集型应用的爆炸式增长,对高度可扩展的并行数据处理平台的需求正在增加。在庞大的数据存储库上执行统计计算对现有的统计软件和计算基础设施提出了重大挑战。在分析了各种开源计算基础设施及其编程范式api之后,结果表明它们大多数是基于JVM的,并且它们的api以Java接口或抽象类的形式给出。本文提出了一个通用框架JR Bridge,该框架通过自动生成Java api代码包装器并处理类型转换,将R和基于jvm的计算基础设施集成在一起。在这个框架下,我们将R语言与Hadoop相结合,构建了一个分布式统计计算环境。有了Hadoop分布式文件系统插件,它带来了一种存储和访问包含数百万对象的数据集的方法。通过使用MapReduce插件,为在R中编写MapReduce算法提供了一个自然的环境。实验结果表明,JR Bridge随着数据集的大小呈线性扩展,从而为在R中进行大规模统计计算提供了一个可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JRBridge: A Framework of Large-Scale Statistical Computing for R
Demands for highly scalable parallel data processing platforms is raising due to an explosion in the number of massive-scale data intensive applications both in industry and in sciences. Performing statistical computing over huge data repositories poses a significant challenge to existing statistical software and computational infrastructure. After analyzing various open source computational infrastructures and their programming paradigm APIs, the results have shown that most of them are JVM based, and their APIs are given as Java interfaces or abstract classes. This paper proposes a generic framework JR Bridge, which can integrate R and JVM-based computational infrastructures by generating Java APIs code wrapper around the native R code automatically and handling type conversion. Using this framework, we build a distributed statistical computing environment by integrating R with Hadoop. With the Hadoop Distributed File System plug in, it brings a way to store and access datasets with millions of objects. With MapReduce plug in, it brings a natural environment to code MapReduce algorithms in R. The experiment result shows JR Bridge scales linearly with the size of the datasets and thus provides a scalable solution for large-scale statistical computing in R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信