基于纹理和颜色全局对比的显著目标检测

Yan-Fei Ren, Zhichun Mu
{"title":"基于纹理和颜色全局对比的显著目标检测","authors":"Yan-Fei Ren, Zhichun Mu","doi":"10.1109/ICMLC.2014.7009083","DOIUrl":null,"url":null,"abstract":"Computationally detecting salient image object based on human attention is of great significance for image understanding. In this paper, we introduce a method for saliency map generation with a novel way of extracting texture feature and a strategy for feature fusion. Our method combines texture and color region contrasts to make the salient object stand out from images. We compare our algorithm to five salient region detection methods with ground truth and salient object segmentation. Our method outperforms the five algorithms on both the ground-truth evaluation and salient object segmentation.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Salient object detection based on global contrast on texture and color\",\"authors\":\"Yan-Fei Ren, Zhichun Mu\",\"doi\":\"10.1109/ICMLC.2014.7009083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computationally detecting salient image object based on human attention is of great significance for image understanding. In this paper, we introduce a method for saliency map generation with a novel way of extracting texture feature and a strategy for feature fusion. Our method combines texture and color region contrasts to make the salient object stand out from images. We compare our algorithm to five salient region detection methods with ground truth and salient object segmentation. Our method outperforms the five algorithms on both the ground-truth evaluation and salient object segmentation.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于人类注意力的显著性图像目标的计算检测对于图像理解具有重要意义。本文提出了一种基于纹理特征提取方法和特征融合策略的显著性图生成方法。我们的方法结合纹理和颜色区域对比,使突出的目标从图像中脱颖而出。我们将该算法与五种具有地面真值和显著目标分割的显著区域检测方法进行了比较。我们的方法在ground-truth评估和显著目标分割上都优于这五种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Salient object detection based on global contrast on texture and color
Computationally detecting salient image object based on human attention is of great significance for image understanding. In this paper, we introduce a method for saliency map generation with a novel way of extracting texture feature and a strategy for feature fusion. Our method combines texture and color region contrasts to make the salient object stand out from images. We compare our algorithm to five salient region detection methods with ground truth and salient object segmentation. Our method outperforms the five algorithms on both the ground-truth evaluation and salient object segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信