使用主题组成的预测可视化分析

Hanbyul Yeon, Yun Jang
{"title":"使用主题组成的预测可视化分析","authors":"Hanbyul Yeon, Yun Jang","doi":"10.1145/2801040.2801054","DOIUrl":null,"url":null,"abstract":"Digital big data provide the vast potential of increasing effectiveness and efficiency for decision making. Since the volume of the data is enormous, the data analysis requires large amount of time and effort. It is more problematic when predictive analysis is necessary for futuristic decision making. In order for predictive analysis, there have been many studies to forecast future trends spatiotemporally. However, most of studies provide just future tendency per event using graphs or maps without contextual compositive analysis. In this paper, we present a predictive visual analytics system to provide predictive event patterns. We infer the future event evolution by combining contextually similar cases occurring in the past. We utilize social media data to detect interesting abnormal events and match the detected abnormal events within the past news media data in order to retrieve similar event patterns. Then, we extract future event patterns through compositing contextual relationship among topics included in the similar past patterns. In order to evaluate our VA system, we demonstrate two use cases in this paper and validate our system with possible predictive story lines.","PeriodicalId":399556,"journal":{"name":"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Predictive Visual Analytics using Topic Composition\",\"authors\":\"Hanbyul Yeon, Yun Jang\",\"doi\":\"10.1145/2801040.2801054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital big data provide the vast potential of increasing effectiveness and efficiency for decision making. Since the volume of the data is enormous, the data analysis requires large amount of time and effort. It is more problematic when predictive analysis is necessary for futuristic decision making. In order for predictive analysis, there have been many studies to forecast future trends spatiotemporally. However, most of studies provide just future tendency per event using graphs or maps without contextual compositive analysis. In this paper, we present a predictive visual analytics system to provide predictive event patterns. We infer the future event evolution by combining contextually similar cases occurring in the past. We utilize social media data to detect interesting abnormal events and match the detected abnormal events within the past news media data in order to retrieve similar event patterns. Then, we extract future event patterns through compositing contextual relationship among topics included in the similar past patterns. In order to evaluate our VA system, we demonstrate two use cases in this paper and validate our system with possible predictive story lines.\",\"PeriodicalId\":399556,\"journal\":{\"name\":\"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2801040.2801054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2801040.2801054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

数字大数据为提高决策的有效性和效率提供了巨大的潜力。由于数据量巨大,数据分析需要大量的时间和精力。当预测分析是未来决策的必要条件时,问题就更大了。为了进行预测分析,已有许多研究对未来的时空趋势进行了预测。然而,大多数研究只是使用图表或地图提供每个事件的未来趋势,而没有上下文综合分析。在本文中,我们提出了一个预测可视化分析系统来提供预测事件模式。我们通过结合过去发生的背景相似的案例来推断未来事件的演变。我们利用社交媒体数据来检测有趣的异常事件,并将检测到的异常事件与过去的新闻媒体数据进行匹配,从而获得相似的事件模式。然后,我们通过合成包含在相似过去模式中的主题之间的上下文关系来提取未来事件模式。为了评估我们的VA系统,我们在本文中演示了两个用例,并用可能的预测故事线验证我们的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Visual Analytics using Topic Composition
Digital big data provide the vast potential of increasing effectiveness and efficiency for decision making. Since the volume of the data is enormous, the data analysis requires large amount of time and effort. It is more problematic when predictive analysis is necessary for futuristic decision making. In order for predictive analysis, there have been many studies to forecast future trends spatiotemporally. However, most of studies provide just future tendency per event using graphs or maps without contextual compositive analysis. In this paper, we present a predictive visual analytics system to provide predictive event patterns. We infer the future event evolution by combining contextually similar cases occurring in the past. We utilize social media data to detect interesting abnormal events and match the detected abnormal events within the past news media data in order to retrieve similar event patterns. Then, we extract future event patterns through compositing contextual relationship among topics included in the similar past patterns. In order to evaluate our VA system, we demonstrate two use cases in this paper and validate our system with possible predictive story lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信