脑控接口功能近红外光谱(fNIRS)中的主成分-人工神经网络

Jia Heng Ong, K. Chia
{"title":"脑控接口功能近红外光谱(fNIRS)中的主成分-人工神经网络","authors":"Jia Heng Ong, K. Chia","doi":"10.1109/3ICT53449.2021.9581861","DOIUrl":null,"url":null,"abstract":"Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that is widely utilized in Brain Control Interface (BCI) applications. Feature extraction is crucial to remove unwanted signals and improve the accuracy of a machine learning algorithm in BCI. Despite principal component analysis (PCA) is a popular feature extraction method in near-infrared spectroscopy, PCA is rarely studied in fNIRS. Thus, this study compared fNIRS-based BCI models that used PCA and that used statistical features in BCI for four mental activities classification. First, PCA was applied to transform pre-processed fNIRS signals into few principal components that were the inputs of artificial neural network (ANN) to form PCs-ANN. Three different combinations of fNIRS signals were used to study the performance of PCs-ANN using 10-fold cross-validation. The best PCs-ANN was compared with ANN that used statistical-based features. The finding shows that PCs-ANN outperformed ANN that used statistical-based features in the BCI classification application.","PeriodicalId":133021,"journal":{"name":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal Components-Artificial Neural Network in Functional Near-Infrared Spectroscopy (fNIRS) for Brain Control Interface\",\"authors\":\"Jia Heng Ong, K. Chia\",\"doi\":\"10.1109/3ICT53449.2021.9581861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that is widely utilized in Brain Control Interface (BCI) applications. Feature extraction is crucial to remove unwanted signals and improve the accuracy of a machine learning algorithm in BCI. Despite principal component analysis (PCA) is a popular feature extraction method in near-infrared spectroscopy, PCA is rarely studied in fNIRS. Thus, this study compared fNIRS-based BCI models that used PCA and that used statistical features in BCI for four mental activities classification. First, PCA was applied to transform pre-processed fNIRS signals into few principal components that were the inputs of artificial neural network (ANN) to form PCs-ANN. Three different combinations of fNIRS signals were used to study the performance of PCs-ANN using 10-fold cross-validation. The best PCs-ANN was compared with ANN that used statistical-based features. The finding shows that PCs-ANN outperformed ANN that used statistical-based features in the BCI classification application.\",\"PeriodicalId\":133021,\"journal\":{\"name\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3ICT53449.2021.9581861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3ICT53449.2021.9581861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功能近红外光谱(fNIRS)是一种非侵入性脑成像技术,广泛应用于脑控制接口(BCI)。在脑机接口中,特征提取对于去除无用信号和提高机器学习算法的准确性至关重要。尽管主成分分析是近红外光谱中常用的特征提取方法,但在近红外光谱中对主成分分析的研究却很少。因此,本研究比较了基于fnir的脑机接口模型中使用PCA和使用脑机接口统计特征的四种心理活动分类。首先,利用主成分分析法(PCA)将预处理后的fNIRS信号转化为几个主成分,作为人工神经网络(ANN)的输入,形成PCs-ANN;使用三种不同的fNIRS信号组合,通过10倍交叉验证研究PCs-ANN的性能。将PCs-ANN与基于统计特征的ANN进行比较。研究结果表明,pc -ANN在脑机接口分类应用中优于使用基于统计特征的ANN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal Components-Artificial Neural Network in Functional Near-Infrared Spectroscopy (fNIRS) for Brain Control Interface
Functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technology that is widely utilized in Brain Control Interface (BCI) applications. Feature extraction is crucial to remove unwanted signals and improve the accuracy of a machine learning algorithm in BCI. Despite principal component analysis (PCA) is a popular feature extraction method in near-infrared spectroscopy, PCA is rarely studied in fNIRS. Thus, this study compared fNIRS-based BCI models that used PCA and that used statistical features in BCI for four mental activities classification. First, PCA was applied to transform pre-processed fNIRS signals into few principal components that were the inputs of artificial neural network (ANN) to form PCs-ANN. Three different combinations of fNIRS signals were used to study the performance of PCs-ANN using 10-fold cross-validation. The best PCs-ANN was compared with ANN that used statistical-based features. The finding shows that PCs-ANN outperformed ANN that used statistical-based features in the BCI classification application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信