具有连续武器的单峰强盗:无平滑的秩序最优后悔

Richard Combes, A. Proutière, A. Fauquette
{"title":"具有连续武器的单峰强盗:无平滑的秩序最优后悔","authors":"Richard Combes, A. Proutière, A. Fauquette","doi":"10.1145/3393691.3394225","DOIUrl":null,"url":null,"abstract":"We consider stochastic bandit problems with a continuous set of arms and where the expected reward is a continuous and unimodal function of the arm. For these problems, we propose the Stochastic Polychotomy (SP) algorithms, and derive finite-time upper bounds on their regret and optimization error. We show that, for a class of reward functions, the SP algorithm achieves a regret and an optimization error with optimal scalings, i.e., O(√T) and O(1/√T) (up to a logarithmic factor), respectively.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unimodal Bandits with Continuous Arms: Order-optimal Regret without Smoothness\",\"authors\":\"Richard Combes, A. Proutière, A. Fauquette\",\"doi\":\"10.1145/3393691.3394225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider stochastic bandit problems with a continuous set of arms and where the expected reward is a continuous and unimodal function of the arm. For these problems, we propose the Stochastic Polychotomy (SP) algorithms, and derive finite-time upper bounds on their regret and optimization error. We show that, for a class of reward functions, the SP algorithm achieves a regret and an optimization error with optimal scalings, i.e., O(√T) and O(1/√T) (up to a logarithmic factor), respectively.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑具有连续臂的随机强盗问题,其中期望奖励是臂的连续单峰函数。针对这些问题,我们提出了随机多切分(SP)算法,并推导了它们的遗憾和优化误差的有限时间上界。我们证明,对于一类奖励函数,SP算法分别实现了具有最优缩放的遗憾和优化误差,即O(√T)和O(1/√T)(最高为对数因子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unimodal Bandits with Continuous Arms: Order-optimal Regret without Smoothness
We consider stochastic bandit problems with a continuous set of arms and where the expected reward is a continuous and unimodal function of the arm. For these problems, we propose the Stochastic Polychotomy (SP) algorithms, and derive finite-time upper bounds on their regret and optimization error. We show that, for a class of reward functions, the SP algorithm achieves a regret and an optimization error with optimal scalings, i.e., O(√T) and O(1/√T) (up to a logarithmic factor), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信