算术版本的布尔代数

M. Azram, J. Daoud, F. Elfaki
{"title":"算术版本的布尔代数","authors":"M. Azram, J. Daoud, F. Elfaki","doi":"10.1109/ICCSIT.2009.5234473","DOIUrl":null,"url":null,"abstract":"In this article we will discuss that the logical results in Boolean algebra can equally be derived with ordinary algebraic operations. We will establish arithmetic versions of the common logical propositions inclusive of Sheffer stroke (Nand connective) and Peirce's arrow (Nor connective) which are very important to design circuit diagrams. We will present the comparison of some basic logical Boolean expressions and their arithmetic version through the truth tables. Finally we will establish the fundamental logical equivalent propositions via arithmetic versions.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Arithmetic version of Boolean algebra\",\"authors\":\"M. Azram, J. Daoud, F. Elfaki\",\"doi\":\"10.1109/ICCSIT.2009.5234473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we will discuss that the logical results in Boolean algebra can equally be derived with ordinary algebraic operations. We will establish arithmetic versions of the common logical propositions inclusive of Sheffer stroke (Nand connective) and Peirce's arrow (Nor connective) which are very important to design circuit diagrams. We will present the comparison of some basic logical Boolean expressions and their arithmetic version through the truth tables. Finally we will establish the fundamental logical equivalent propositions via arithmetic versions.\",\"PeriodicalId\":342396,\"journal\":{\"name\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd IEEE International Conference on Computer Science and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIT.2009.5234473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们将讨论布尔代数中的逻辑结果可以用普通代数运算同等地推导出来。我们将建立常见逻辑命题的算术版本,包括Sheffer笔画(Nand连接)和Peirce箭头(Nor连接),这对设计电路图非常重要。我们将通过真值表比较一些基本的逻辑布尔表达式和它们的算术版本。最后,我们将通过算术版本建立基本的逻辑等价命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic version of Boolean algebra
In this article we will discuss that the logical results in Boolean algebra can equally be derived with ordinary algebraic operations. We will establish arithmetic versions of the common logical propositions inclusive of Sheffer stroke (Nand connective) and Peirce's arrow (Nor connective) which are very important to design circuit diagrams. We will present the comparison of some basic logical Boolean expressions and their arithmetic version through the truth tables. Finally we will establish the fundamental logical equivalent propositions via arithmetic versions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信