希尔伯特之后的齐恩豪斯变换

J. Wolfson
{"title":"希尔伯特之后的齐恩豪斯变换","authors":"J. Wolfson","doi":"10.4171/LEM/66-3/4-9","DOIUrl":null,"url":null,"abstract":"Let RD(n) denote the minimum d for which there exists a formula for the roots of the general degree n polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched how the 27 lines on a cubic surface could be used to construct a 4-variable formula for the general degree 9 polynomial (implying $RD(9)\\le 4$). In this paper, we turn Hilbert's sketch into a general method. We show this method produces best-to-date upper bounds on RD(n) for all n, improving earlier results of Hamilton, Sylvester, Segre and Brauer.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tschirnhaus transformations after Hilbert\",\"authors\":\"J. Wolfson\",\"doi\":\"10.4171/LEM/66-3/4-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let RD(n) denote the minimum d for which there exists a formula for the roots of the general degree n polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched how the 27 lines on a cubic surface could be used to construct a 4-variable formula for the general degree 9 polynomial (implying $RD(9)\\\\le 4$). In this paper, we turn Hilbert's sketch into a general method. We show this method produces best-to-date upper bounds on RD(n) for all n, improving earlier results of Hamilton, Sylvester, Segre and Brauer.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/66-3/4-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/66-3/4-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

设RD(n)表示最小的d,对于该最小d,存在一个仅使用d或更少变量的代数函数求一般n次多项式的根的公式。1927年,希尔伯特概述了如何使用三次曲面上的27条线来构造一般9次多项式的4变量公式(暗示$RD(9)\le 4$)。在本文中,我们将希尔伯特草图转化为一般方法。我们证明,这种方法对所有n产生了迄今为止最好的RD(n)上界,改进了Hamilton, Sylvester, Segre和Brauer的早期结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tschirnhaus transformations after Hilbert
Let RD(n) denote the minimum d for which there exists a formula for the roots of the general degree n polynomial using only algebraic functions of d or fewer variables. In 1927, Hilbert sketched how the 27 lines on a cubic surface could be used to construct a 4-variable formula for the general degree 9 polynomial (implying $RD(9)\le 4$). In this paper, we turn Hilbert's sketch into a general method. We show this method produces best-to-date upper bounds on RD(n) for all n, improving earlier results of Hamilton, Sylvester, Segre and Brauer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信