感知损失对视频超分辨率的影响

Marzieh Hosseinkhani, Azadeh Mansouri
{"title":"感知损失对视频超分辨率的影响","authors":"Marzieh Hosseinkhani, Azadeh Mansouri","doi":"10.1109/MVIP53647.2022.9738742","DOIUrl":null,"url":null,"abstract":"Intensity-based loss which measures pixel-wise difference is commonly used for most of the learning-based super-resolution approaches. Since the error of different components has disparate impacts on human visual system, the structural error which calculates the error of the perceptually influential components is proposed for the loss function of the video super-resolution. The proposed loss function is presented based on the JPEG compression algorithm and the effect of using quantization matrix on resultant output. The proposed loss function can be employed instead of the traditional MSE loss function. In this paper, we explored the effect of using this perceptual loss for VESPCN method. The experimental results illustrate better outputs in terms of average PSNR, average SSIM, and VQM.","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Perceptual Loss for Video Super-Resolution\",\"authors\":\"Marzieh Hosseinkhani, Azadeh Mansouri\",\"doi\":\"10.1109/MVIP53647.2022.9738742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensity-based loss which measures pixel-wise difference is commonly used for most of the learning-based super-resolution approaches. Since the error of different components has disparate impacts on human visual system, the structural error which calculates the error of the perceptually influential components is proposed for the loss function of the video super-resolution. The proposed loss function is presented based on the JPEG compression algorithm and the effect of using quantization matrix on resultant output. The proposed loss function can be employed instead of the traditional MSE loss function. In this paper, we explored the effect of using this perceptual loss for VESPCN method. The experimental results illustrate better outputs in terms of average PSNR, average SSIM, and VQM.\",\"PeriodicalId\":184716,\"journal\":{\"name\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP53647.2022.9738742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

测量逐像素差异的基于强度的损失通常用于大多数基于学习的超分辨率方法。由于不同分量的误差对人类视觉系统的影响是不同的,因此提出了计算感知影响分量误差的结构误差作为视频超分辨率损失函数。基于JPEG压缩算法和量化矩阵对输出结果的影响,提出了一种损失函数。所提出的损失函数可以代替传统的MSE损失函数。在本文中,我们探讨了将这种感知损失用于VESPCN方法的效果。实验结果表明,在平均PSNR、平均SSIM和VQM方面,该方法的输出效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Perceptual Loss for Video Super-Resolution
Intensity-based loss which measures pixel-wise difference is commonly used for most of the learning-based super-resolution approaches. Since the error of different components has disparate impacts on human visual system, the structural error which calculates the error of the perceptually influential components is proposed for the loss function of the video super-resolution. The proposed loss function is presented based on the JPEG compression algorithm and the effect of using quantization matrix on resultant output. The proposed loss function can be employed instead of the traditional MSE loss function. In this paper, we explored the effect of using this perceptual loss for VESPCN method. The experimental results illustrate better outputs in terms of average PSNR, average SSIM, and VQM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信