神经网络在高自由度机器人分散控制中的应用

N. Sadati, E. Elhamifar
{"title":"神经网络在高自由度机器人分散控制中的应用","authors":"N. Sadati, E. Elhamifar","doi":"10.1109/ICTAI.2005.39","DOIUrl":null,"url":null,"abstract":"In this paper, a neural network decentralized control for trajectory tracking of robot manipulators is developed. The proposed decentralized control allows the overall closed-loop system to be stabilized while making the tracking error to be uniformly ultimately bounded (UUB), without having any prior knowledge of the robot manipulator dynamics. The interconnections in the dynamic equations of each subsystem are considered with unknown nonlinear bounds. The RBF neural networks (RBFNNs) are proposed to model the unknown nonlinear dynamics of the robots and the interconnection terms. Using Lyapunov method, the stability of the overall system is investigated","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of neural networks to decentralized control of robot manipulators with high degree of freedom\",\"authors\":\"N. Sadati, E. Elhamifar\",\"doi\":\"10.1109/ICTAI.2005.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a neural network decentralized control for trajectory tracking of robot manipulators is developed. The proposed decentralized control allows the overall closed-loop system to be stabilized while making the tracking error to be uniformly ultimately bounded (UUB), without having any prior knowledge of the robot manipulator dynamics. The interconnections in the dynamic equations of each subsystem are considered with unknown nonlinear bounds. The RBF neural networks (RBFNNs) are proposed to model the unknown nonlinear dynamics of the robots and the interconnection terms. Using Lyapunov method, the stability of the overall system is investigated\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种用于机器人机械手轨迹跟踪的神经网络分散控制方法。所提出的分散控制可以使整个闭环系统稳定,同时使跟踪误差均匀最终有界(UUB),而无需事先了解机器人操纵臂动力学。考虑了各子系统动力学方程中相互关系的非线性边界未知。提出了RBF神经网络(RBFNNs)对机器人的未知非线性动力学和互连项进行建模。利用李雅普诺夫方法研究了整个系统的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neural networks to decentralized control of robot manipulators with high degree of freedom
In this paper, a neural network decentralized control for trajectory tracking of robot manipulators is developed. The proposed decentralized control allows the overall closed-loop system to be stabilized while making the tracking error to be uniformly ultimately bounded (UUB), without having any prior knowledge of the robot manipulator dynamics. The interconnections in the dynamic equations of each subsystem are considered with unknown nonlinear bounds. The RBF neural networks (RBFNNs) are proposed to model the unknown nonlinear dynamics of the robots and the interconnection terms. Using Lyapunov method, the stability of the overall system is investigated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信