H. Mahmoud, A. Abou-Elyazied Abdallh, S. El-Hakim, A. Shaltout, L. Dupré, N. Bianchi
{"title":"磁摆振荡技术在异步电机匝间故障检测中的应用","authors":"H. Mahmoud, A. Abou-Elyazied Abdallh, S. El-Hakim, A. Shaltout, L. Dupré, N. Bianchi","doi":"10.1109/WEMDCD.2015.7194534","DOIUrl":null,"url":null,"abstract":"In this paper, a coupled experimental-mathematical inverse problem based methodology for the detection of inter-turn faults in an asynchronous induction machine is presented. The fault detection is accomplished by interpreting well-defined measurements into the machine mathematical model. First, the studied machine is modeled by means of a dynamic state-space model in the abc reference frame. This model simulates the machine behavior under healthy and faulty cases in both transient and steady-state conditions. The signature of the inter-turn fault is captured using the magnetic pendulous oscillation technique. The proposed inverse problem is validated numerically and experimentally. The results show the robustness of the proposed scheme against the measurement noise.","PeriodicalId":173358,"journal":{"name":"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An inverse approach for inter-turn fault detection in asynchronous machines using magnetic pendulous oscillation technique\",\"authors\":\"H. Mahmoud, A. Abou-Elyazied Abdallh, S. El-Hakim, A. Shaltout, L. Dupré, N. Bianchi\",\"doi\":\"10.1109/WEMDCD.2015.7194534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a coupled experimental-mathematical inverse problem based methodology for the detection of inter-turn faults in an asynchronous induction machine is presented. The fault detection is accomplished by interpreting well-defined measurements into the machine mathematical model. First, the studied machine is modeled by means of a dynamic state-space model in the abc reference frame. This model simulates the machine behavior under healthy and faulty cases in both transient and steady-state conditions. The signature of the inter-turn fault is captured using the magnetic pendulous oscillation technique. The proposed inverse problem is validated numerically and experimentally. The results show the robustness of the proposed scheme against the measurement noise.\",\"PeriodicalId\":173358,\"journal\":{\"name\":\"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WEMDCD.2015.7194534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WEMDCD.2015.7194534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An inverse approach for inter-turn fault detection in asynchronous machines using magnetic pendulous oscillation technique
In this paper, a coupled experimental-mathematical inverse problem based methodology for the detection of inter-turn faults in an asynchronous induction machine is presented. The fault detection is accomplished by interpreting well-defined measurements into the machine mathematical model. First, the studied machine is modeled by means of a dynamic state-space model in the abc reference frame. This model simulates the machine behavior under healthy and faulty cases in both transient and steady-state conditions. The signature of the inter-turn fault is captured using the magnetic pendulous oscillation technique. The proposed inverse problem is validated numerically and experimentally. The results show the robustness of the proposed scheme against the measurement noise.