差分预测编码中解码器输出平滑的性能改进

J. Gibson, Malavika Bhaskaranand
{"title":"差分预测编码中解码器输出平滑的性能改进","authors":"J. Gibson, Malavika Bhaskaranand","doi":"10.1109/ITA.2014.6804266","DOIUrl":null,"url":null,"abstract":"We provide a theoretical analysis of the performance of differential predictive coding using fixed-lag smoothing of the standard decoder output. This performance is compared to related results for coding using latency at the encoder, and causal encoding with delayed decoding, as well as with some prior theoretical analyses of these methods. Surprisingly, it is shown that fixed-lag smoothing of the standard decoder output with causal encoding achieves the asymptotic and finite lag performance promised by a completely reoptimized decoder.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance improvement with decoder output smoothing in differential predictive coding\",\"authors\":\"J. Gibson, Malavika Bhaskaranand\",\"doi\":\"10.1109/ITA.2014.6804266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a theoretical analysis of the performance of differential predictive coding using fixed-lag smoothing of the standard decoder output. This performance is compared to related results for coding using latency at the encoder, and causal encoding with delayed decoding, as well as with some prior theoretical analyses of these methods. Surprisingly, it is shown that fixed-lag smoothing of the standard decoder output with causal encoding achieves the asymptotic and finite lag performance promised by a completely reoptimized decoder.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对差分预测编码的性能进行了理论分析,使用标准解码器输出的固定滞后平滑。将这种性能与使用编码器延迟编码的相关结果、使用延迟解码的因果编码以及先前对这些方法的一些理论分析进行了比较。令人惊讶的是,研究结果表明,采用因果编码的标准解码器输出的固定滞后平滑实现了完全重新优化的解码器所承诺的渐近和有限滞后性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance improvement with decoder output smoothing in differential predictive coding
We provide a theoretical analysis of the performance of differential predictive coding using fixed-lag smoothing of the standard decoder output. This performance is compared to related results for coding using latency at the encoder, and causal encoding with delayed decoding, as well as with some prior theoretical analyses of these methods. Surprisingly, it is shown that fixed-lag smoothing of the standard decoder output with causal encoding achieves the asymptotic and finite lag performance promised by a completely reoptimized decoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信