Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth
{"title":"利用信息增益过滤改进语言模型微调","authors":"Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth","doi":"10.52591/lxai202207105","DOIUrl":null,"url":null,"abstract":"Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.","PeriodicalId":350984,"journal":{"name":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Language Model Fine-tuning with Information Gain Filtration\",\"authors\":\"Javier Turek, Richard Antonello, Nicole M. Beckage, Alexander G. Huth\",\"doi\":\"10.52591/lxai202207105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.\",\"PeriodicalId\":350984,\"journal\":{\"name\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/lxai202207105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at North American Chapter of the Association for Computational Linguistics Conference 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai202207105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Language Model Fine-tuning with Information Gain Filtration
Language model fine-tuning is essential for modern natural language processing. The effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present Information Gain Filtration, a general fine-tuning method, for improving the overall final performance of a fine-tuned model. We define Information Gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner filters informative examples from uninformative ones. We show that our method is robust and has consistent improvement across datasets, fine-tuning tasks, and language model architectures.