针对BERT ABSA模型的对抗性示例-用L33T,拼写错误和标点符号愚弄BERT,

Nora Hofer, Pascal Schöttle, A. Rietzler, Sebastian Stabinger
{"title":"针对BERT ABSA模型的对抗性示例-用L33T,拼写错误和标点符号愚弄BERT,","authors":"Nora Hofer, Pascal Schöttle, A. Rietzler, Sebastian Stabinger","doi":"10.1145/3465481.3465770","DOIUrl":null,"url":null,"abstract":"The BERT model is de facto state-of-the-art for aspect-based sentiment analysis (ABSA), an important task in natural language processing. Similar to every other model based on deep learning, BERT is vulnerable to so-called adversarial examples: strategically modified inputs that cause a change in the model’s prediction of the underlying input. In this paper we propose three new methods to create character-level adversarial examples against BERT and evaluate their effectiveness on the ABSA task. Specifically, our attack methods mimic human behavior and use leetspeak, common misspellings, or misplaced commas. By concentrating these changes on important words, we are able to maximize misclassification rates with minimal changes. To the best of our knowledge, we are the first to look into adversarial examples for the ABSA task and the first to propose these attacks.","PeriodicalId":417395,"journal":{"name":"Proceedings of the 16th International Conference on Availability, Reliability and Security","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adversarial Examples Against a BERT ABSA Model – Fooling Bert With L33T, Misspellign, and Punctuation,\",\"authors\":\"Nora Hofer, Pascal Schöttle, A. Rietzler, Sebastian Stabinger\",\"doi\":\"10.1145/3465481.3465770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The BERT model is de facto state-of-the-art for aspect-based sentiment analysis (ABSA), an important task in natural language processing. Similar to every other model based on deep learning, BERT is vulnerable to so-called adversarial examples: strategically modified inputs that cause a change in the model’s prediction of the underlying input. In this paper we propose three new methods to create character-level adversarial examples against BERT and evaluate their effectiveness on the ABSA task. Specifically, our attack methods mimic human behavior and use leetspeak, common misspellings, or misplaced commas. By concentrating these changes on important words, we are able to maximize misclassification rates with minimal changes. To the best of our knowledge, we are the first to look into adversarial examples for the ABSA task and the first to propose these attacks.\",\"PeriodicalId\":417395,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Availability, Reliability and Security\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Availability, Reliability and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3465481.3465770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Availability, Reliability and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465481.3465770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

BERT模型实际上是基于方面的情感分析(ABSA)的最新技术,是自然语言处理中的一项重要任务。与其他基于深度学习的模型类似,BERT很容易受到所谓的对抗性示例的影响:战略性地修改输入,导致模型对潜在输入的预测发生变化。在本文中,我们提出了三种新的方法来创建针对BERT的字符级对抗示例,并评估了它们在ABSA任务上的有效性。具体地说,我们的攻击方法模仿人类的行为,使用错误的语言、常见的拼写错误或放错位置的逗号。通过将这些变化集中在重要的词上,我们能够以最小的变化最大化错误分类率。据我们所知,我们是第一个研究ABSA任务对抗性示例的人,也是第一个提出这些攻击的人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Examples Against a BERT ABSA Model – Fooling Bert With L33T, Misspellign, and Punctuation,
The BERT model is de facto state-of-the-art for aspect-based sentiment analysis (ABSA), an important task in natural language processing. Similar to every other model based on deep learning, BERT is vulnerable to so-called adversarial examples: strategically modified inputs that cause a change in the model’s prediction of the underlying input. In this paper we propose three new methods to create character-level adversarial examples against BERT and evaluate their effectiveness on the ABSA task. Specifically, our attack methods mimic human behavior and use leetspeak, common misspellings, or misplaced commas. By concentrating these changes on important words, we are able to maximize misclassification rates with minimal changes. To the best of our knowledge, we are the first to look into adversarial examples for the ABSA task and the first to propose these attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信