无零周期接触序列时间图的最优行走

Anuj Jain, S. Sahni
{"title":"无零周期接触序列时间图的最优行走","authors":"Anuj Jain, S. Sahni","doi":"10.1109/ISCC58397.2023.10218173","DOIUrl":null,"url":null,"abstract":"We develop an algorithm to find walks in contact sequence temporal graphs that have no cycle whose duration is zero. These walks minimize any specified linear combination of optimization criteria such as arrival time, travel duration, hops, and cost. The algorithm also accommodates waiting time constraints. When min and max waiting time constraints are specified, the complexity of our algorithm is $O(\\vert V\\vert +\\vert E\\vert\\delta)$, where $\\vert V\\vert$ is the number of vertices, $\\vert E\\vert$ is the number of edges, and $\\delta$ is the maximum out-degree of a vertex in the contact sequence temporal graph. When there are no maximum waiting time constraints, the complexity of our algorithm is $O(\\vert V\\vert +\\vert E\\vert)$. On the test data used by Bentert et al., our optimal walks algorithm provides a speedup of up to 77 over the algorithm of Bentert et al. [1] and a memory reduction of up to 3.2.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Walks in Contact Sequence Temporal Graphs with No Zero Duration Cycle\",\"authors\":\"Anuj Jain, S. Sahni\",\"doi\":\"10.1109/ISCC58397.2023.10218173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm to find walks in contact sequence temporal graphs that have no cycle whose duration is zero. These walks minimize any specified linear combination of optimization criteria such as arrival time, travel duration, hops, and cost. The algorithm also accommodates waiting time constraints. When min and max waiting time constraints are specified, the complexity of our algorithm is $O(\\\\vert V\\\\vert +\\\\vert E\\\\vert\\\\delta)$, where $\\\\vert V\\\\vert$ is the number of vertices, $\\\\vert E\\\\vert$ is the number of edges, and $\\\\delta$ is the maximum out-degree of a vertex in the contact sequence temporal graph. When there are no maximum waiting time constraints, the complexity of our algorithm is $O(\\\\vert V\\\\vert +\\\\vert E\\\\vert)$. On the test data used by Bentert et al., our optimal walks algorithm provides a speedup of up to 77 over the algorithm of Bentert et al. [1] and a memory reduction of up to 3.2.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种算法来寻找没有周期且持续时间为零的接触序列时间图中的行走。这些步行最小化任何指定的优化标准的线性组合,如到达时间、旅行持续时间、跳数和成本。该算法还考虑了等待时间的限制。当指定最小和最大等待时间约束时,我们的算法复杂度为$O(\vert V\vert +\vert E\vert\delta)$,其中$\vert V\vert$为顶点数,$\vert E\vert$为边数,$\delta$为接触序列时间图中顶点的最大出度。当不存在最大等待时间约束时,我们算法的复杂度为$O(\vert V\vert +\vert E\vert)$。在Bentert等人使用的测试数据上,我们的最优行走算法比Bentert等人[1]的算法提供了高达77的加速,内存减少高达3.2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Walks in Contact Sequence Temporal Graphs with No Zero Duration Cycle
We develop an algorithm to find walks in contact sequence temporal graphs that have no cycle whose duration is zero. These walks minimize any specified linear combination of optimization criteria such as arrival time, travel duration, hops, and cost. The algorithm also accommodates waiting time constraints. When min and max waiting time constraints are specified, the complexity of our algorithm is $O(\vert V\vert +\vert E\vert\delta)$, where $\vert V\vert$ is the number of vertices, $\vert E\vert$ is the number of edges, and $\delta$ is the maximum out-degree of a vertex in the contact sequence temporal graph. When there are no maximum waiting time constraints, the complexity of our algorithm is $O(\vert V\vert +\vert E\vert)$. On the test data used by Bentert et al., our optimal walks algorithm provides a speedup of up to 77 over the algorithm of Bentert et al. [1] and a memory reduction of up to 3.2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信