语音编码中的卡尔曼滤波技术

S. Crisafulli, J. D. Mills, R. Bitmead
{"title":"语音编码中的卡尔曼滤波技术","authors":"S. Crisafulli, J. D. Mills, R. Bitmead","doi":"10.1109/ICASSP.1992.225968","DOIUrl":null,"url":null,"abstract":"The use of Kalman filtering (KF) techniques in speech coding is investigated. The authors show that the common linear predictor (LP) is a special case of the KF based on an all-pole signal model. They also show that the KF algorithm provides fixed-lag smoothing at no additional complexity. Simulation results reveal that KF based speech coding has significant advantage over the equivalent LP based systems, particularly when used with coarsely quantized measurements.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"60 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Kalman filtering techniques in speech coding\",\"authors\":\"S. Crisafulli, J. D. Mills, R. Bitmead\",\"doi\":\"10.1109/ICASSP.1992.225968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Kalman filtering (KF) techniques in speech coding is investigated. The authors show that the common linear predictor (LP) is a special case of the KF based on an all-pole signal model. They also show that the KF algorithm provides fixed-lag smoothing at no additional complexity. Simulation results reveal that KF based speech coding has significant advantage over the equivalent LP based systems, particularly when used with coarsely quantized measurements.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"60 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.225968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.225968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

研究了卡尔曼滤波技术在语音编码中的应用。作者证明了共同线性预测器(LP)是基于全极信号模型的KF的一种特殊情况。他们还表明,KF算法在没有额外复杂性的情况下提供固定滞后平滑。仿真结果表明,基于KF的语音编码比等效的基于LP的系统具有显著的优势,特别是在使用粗量化测量时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kalman filtering techniques in speech coding
The use of Kalman filtering (KF) techniques in speech coding is investigated. The authors show that the common linear predictor (LP) is a special case of the KF based on an all-pole signal model. They also show that the KF algorithm provides fixed-lag smoothing at no additional complexity. Simulation results reveal that KF based speech coding has significant advantage over the equivalent LP based systems, particularly when used with coarsely quantized measurements.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信