渐进式转换支持向量机学习

Yisong Chen, Guoping Wang, Shihai Dong
{"title":"渐进式转换支持向量机学习","authors":"Yisong Chen, Guoping Wang, Shihai Dong","doi":"10.1109/ICDM.2002.1183887","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. By taking a transductive approach instead of an inductive one in support vector classifiers, the test set can be used as an additional source of information about margins. Intuitively, we would expect transductive learning to yield improvements when the training sets are small or when there is a significant deviation between the training and working set subsamples of the total population. In this paper, a progressive transductive support vector machine is addressed to extend Joachims' Transductive SVM to handle different class distributions. It solves the problem of having to estimate the ratio of positive/negative examples from the working set. The experimental results show that the algorithm is very promising.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"20 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":"{\"title\":\"Learning with progressive transductive Support Vector Machine\",\"authors\":\"Yisong Chen, Guoping Wang, Shihai Dong\",\"doi\":\"10.1109/ICDM.2002.1183887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. By taking a transductive approach instead of an inductive one in support vector classifiers, the test set can be used as an additional source of information about margins. Intuitively, we would expect transductive learning to yield improvements when the training sets are small or when there is a significant deviation between the training and working set subsamples of the total population. In this paper, a progressive transductive support vector machine is addressed to extend Joachims' Transductive SVM to handle different class distributions. It solves the problem of having to estimate the ratio of positive/negative examples from the working set. The experimental results show that the algorithm is very promising.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"20 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"168\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1183887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

摘要

支持向量机(SVM)是近年来在统计学习理论的基础上发展起来的一种新的学习方法。通过在支持向量分类器中采用转换方法而不是归纳方法,测试集可以用作关于边缘的额外信息来源。直观地说,当训练集很小,或者当总体的训练集和工作集子样本之间存在显著偏差时,我们会期望转换学习产生改进。本文提出了一种渐进式换能化支持向量机,将Joachims的换能化支持向量机扩展到处理不同的类分布。它解决了必须从工作集中估计正/负示例的比例的问题。实验结果表明,该算法是很有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning with progressive transductive Support Vector Machine
Support Vector Machine (SVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. By taking a transductive approach instead of an inductive one in support vector classifiers, the test set can be used as an additional source of information about margins. Intuitively, we would expect transductive learning to yield improvements when the training sets are small or when there is a significant deviation between the training and working set subsamples of the total population. In this paper, a progressive transductive support vector machine is addressed to extend Joachims' Transductive SVM to handle different class distributions. It solves the problem of having to estimate the ratio of positive/negative examples from the working set. The experimental results show that the algorithm is very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信