多目标模糊PI控制器神经调度的遗传方法

G. Serra, C. Bottura
{"title":"多目标模糊PI控制器神经调度的遗传方法","authors":"G. Serra, C. Bottura","doi":"10.1109/ISEFS.2006.251147","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent gain scheduling adaptive control approach for nonlinear plants. A fuzzy PI discrete controller is optimally designed by using a multiobjective genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown for adaptive speed control of a DC servomotor used as actuator of robotic manipulators","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic Approach for Neural Scheduling of Multiobjective Fuzzy PI Controllers\",\"authors\":\"G. Serra, C. Bottura\",\"doi\":\"10.1109/ISEFS.2006.251147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent gain scheduling adaptive control approach for nonlinear plants. A fuzzy PI discrete controller is optimally designed by using a multiobjective genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown for adaptive speed control of a DC servomotor used as actuator of robotic manipulators\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种针对非线性对象的智能增益调度自适应控制方法。采用多目标遗传算法优化设计了模糊PI离散控制器,同时满足超调量和稳定时间最小化以及输出响应平滑。利用反向传播算法设计神经增益调度器,对模糊PI控制器在某些工作点的最优参数进行调优。给出了用于机械臂作动器的直流伺服电机自适应速度控制的仿真结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Approach for Neural Scheduling of Multiobjective Fuzzy PI Controllers
This paper presents an intelligent gain scheduling adaptive control approach for nonlinear plants. A fuzzy PI discrete controller is optimally designed by using a multiobjective genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown for adaptive speed control of a DC servomotor used as actuator of robotic manipulators
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信