基于稀疏主成分分析的功放行为模型维数修剪

Yao Yao, Songbai He, Mingyu Li, Mingdong Zhu
{"title":"基于稀疏主成分分析的功放行为模型维数修剪","authors":"Yao Yao, Songbai He, Mingyu Li, Mingdong Zhu","doi":"10.1109/ICCT.2018.8600017","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient data dimension reduction method which uses sparse principal component analysis (SPCA) is presented for reducing the dimensions of power amplifier (PA) behavioral models. Unlike other model pruning techniques, the SPCA method reduces the data dimension by projecting the variables to a new low dimensional coordinate system while minimizing the model information loss. Meanwhile, the norm L2 and L1 are used as constraint and penalty factor to acquire sparse loadings, which can overcome the non-zero loadings disadvantage of ordinary PCA method and reduce the computational complexity in extracting principal components. Experiment results show that the coefficients of the sparse model can be decreased dramatically using the SPCA method, but almost have the same model performance with the full model.","PeriodicalId":244952,"journal":{"name":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Amplifier Behavioral Model Dimension Pruning Using Sparse Principal Component Analysis\",\"authors\":\"Yao Yao, Songbai He, Mingyu Li, Mingdong Zhu\",\"doi\":\"10.1109/ICCT.2018.8600017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient data dimension reduction method which uses sparse principal component analysis (SPCA) is presented for reducing the dimensions of power amplifier (PA) behavioral models. Unlike other model pruning techniques, the SPCA method reduces the data dimension by projecting the variables to a new low dimensional coordinate system while minimizing the model information loss. Meanwhile, the norm L2 and L1 are used as constraint and penalty factor to acquire sparse loadings, which can overcome the non-zero loadings disadvantage of ordinary PCA method and reduce the computational complexity in extracting principal components. Experiment results show that the coefficients of the sparse model can be decreased dramatically using the SPCA method, but almost have the same model performance with the full model.\",\"PeriodicalId\":244952,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2018.8600017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2018.8600017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于稀疏主成分分析(SPCA)的高效数据降维方法,用于降维功放(PA)行为模型。与其他模型修剪技术不同,SPCA方法通过将变量投影到一个新的低维坐标系中来降低数据维数,同时最大限度地减少模型信息的损失。同时,利用范数L2和L1作为约束和惩罚因子获取稀疏载荷,克服了普通主成分分析方法非零载荷的缺点,降低了主成分提取的计算复杂度。实验结果表明,SPCA方法可以显著降低稀疏模型的系数,但与完整模型的模型性能基本相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Amplifier Behavioral Model Dimension Pruning Using Sparse Principal Component Analysis
In this paper, an efficient data dimension reduction method which uses sparse principal component analysis (SPCA) is presented for reducing the dimensions of power amplifier (PA) behavioral models. Unlike other model pruning techniques, the SPCA method reduces the data dimension by projecting the variables to a new low dimensional coordinate system while minimizing the model information loss. Meanwhile, the norm L2 and L1 are used as constraint and penalty factor to acquire sparse loadings, which can overcome the non-zero loadings disadvantage of ordinary PCA method and reduce the computational complexity in extracting principal components. Experiment results show that the coefficients of the sparse model can be decreased dramatically using the SPCA method, but almost have the same model performance with the full model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信