减少含有真空沉积MoOx萃取层的有机太阳能电池性能的可变性

Graeme P. Williams, H. Aziz
{"title":"减少含有真空沉积MoOx萃取层的有机太阳能电池性能的可变性","authors":"Graeme P. Williams, H. Aziz","doi":"10.1117/12.2061078","DOIUrl":null,"url":null,"abstract":"Reproducibility in efficiency and lifetime of organic solar cells (OSCs) remains a major concern, especially with the development of more complex and modern multi-layer device architectures. In this work, OSCs are studied for their efficiency and photo-stability as a function of the quality of their thermally evaporated MoOx hole extraction layer (HEL). To this end, the characteristics of the MoOx film are demonstrated to change with repeat evaporation runs from the same source material. These variations have strong effects on polymer OSCs (p-OSCs), with an effective halving of the power conversion efficiency after only three MoO3 evaporation runs. In contrast, vacuum deposited small molecule OSCs (sm-OSCs) appear to be unaffected by the history of the MoO3 source material. sm- OSCs are instead shown to be prone to large changes in efficiency as a function of the delay time in between deposition of the MoOx HEL and subsequent photo-active materials. Increased delay time between these deposition steps is also demonstrated to decrease the sm-OSC photo-stability. The results thus emphasize subtleties in materials deposition processes that can play a significant role in obtaining reproducible and scientifically relevant data.","PeriodicalId":358951,"journal":{"name":"Optics & Photonics - Photonic Devices + Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the variability in performance of organic solar cells containing vacuum deposited MoOx extraction layers\",\"authors\":\"Graeme P. Williams, H. Aziz\",\"doi\":\"10.1117/12.2061078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reproducibility in efficiency and lifetime of organic solar cells (OSCs) remains a major concern, especially with the development of more complex and modern multi-layer device architectures. In this work, OSCs are studied for their efficiency and photo-stability as a function of the quality of their thermally evaporated MoOx hole extraction layer (HEL). To this end, the characteristics of the MoOx film are demonstrated to change with repeat evaporation runs from the same source material. These variations have strong effects on polymer OSCs (p-OSCs), with an effective halving of the power conversion efficiency after only three MoO3 evaporation runs. In contrast, vacuum deposited small molecule OSCs (sm-OSCs) appear to be unaffected by the history of the MoO3 source material. sm- OSCs are instead shown to be prone to large changes in efficiency as a function of the delay time in between deposition of the MoOx HEL and subsequent photo-active materials. Increased delay time between these deposition steps is also demonstrated to decrease the sm-OSC photo-stability. The results thus emphasize subtleties in materials deposition processes that can play a significant role in obtaining reproducible and scientifically relevant data.\",\"PeriodicalId\":358951,\"journal\":{\"name\":\"Optics & Photonics - Photonic Devices + Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Photonics - Photonic Devices + Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2061078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Photonics - Photonic Devices + Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2061078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机太阳能电池(OSCs)的效率和寿命的再现性仍然是一个主要问题,特别是随着更复杂和现代多层器件架构的发展。在这项工作中,研究了OSCs的效率和光稳定性作为其热蒸发MoOx孔萃取层(HEL)质量的函数。为此,证明了MoOx薄膜的特性随着同一源材料的重复蒸发而变化。这些变化对聚合物OSCs (p-OSCs)有很强的影响,仅在三次MoO3蒸发运行后,功率转换效率就有效地降低了一半。相比之下,真空沉积的小分子OSCs (sm-OSCs)似乎不受MoO3源材料历史的影响。相反,sm- OSCs的效率随着MoOx HEL和后续光活性材料沉积之间的延迟时间的变化而发生了很大的变化。这些沉积步骤之间延迟时间的增加也被证明会降低sm-OSC的光稳定性。因此,结果强调了材料沉积过程中的细微之处,这些过程可以在获得可重复和科学相关的数据方面发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the variability in performance of organic solar cells containing vacuum deposited MoOx extraction layers
Reproducibility in efficiency and lifetime of organic solar cells (OSCs) remains a major concern, especially with the development of more complex and modern multi-layer device architectures. In this work, OSCs are studied for their efficiency and photo-stability as a function of the quality of their thermally evaporated MoOx hole extraction layer (HEL). To this end, the characteristics of the MoOx film are demonstrated to change with repeat evaporation runs from the same source material. These variations have strong effects on polymer OSCs (p-OSCs), with an effective halving of the power conversion efficiency after only three MoO3 evaporation runs. In contrast, vacuum deposited small molecule OSCs (sm-OSCs) appear to be unaffected by the history of the MoO3 source material. sm- OSCs are instead shown to be prone to large changes in efficiency as a function of the delay time in between deposition of the MoOx HEL and subsequent photo-active materials. Increased delay time between these deposition steps is also demonstrated to decrease the sm-OSC photo-stability. The results thus emphasize subtleties in materials deposition processes that can play a significant role in obtaining reproducible and scientifically relevant data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信