Matthias Grabmair, Kevin D. Ashley, Ran Chen, Preethi Sureshkumar, Chen Wang, Eric Nyberg, Vern R. Walker
{"title":"介绍LUIMA:使用UIMA类型的系统和工具进行疫苗伤害判决法律概念检索的实验","authors":"Matthias Grabmair, Kevin D. Ashley, Ran Chen, Preethi Sureshkumar, Chen Wang, Eric Nyberg, Vern R. Walker","doi":"10.1145/2746090.2746096","DOIUrl":null,"url":null,"abstract":"This paper presents first results from a proof of feasibility experiment in conceptual legal document retrieval in a particular domain (involving vaccine injury compensation). The conceptual markup of documents is done automatically using LUIMA, a law-specific semantic extraction toolbox based on the UIMA framework. The system consists of modules for automatic sub-sentence level annotation, machine learning based sentence annotation, basic retrieval using Apache Lucene and a machine learning based reranking of retrieved documents. In a leave-one-out experiment on a limited corpus, the resulting rankings scored higher for most tested queries than baseline rankings created using a commercial full-text legal information system.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Introducing LUIMA: an experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools\",\"authors\":\"Matthias Grabmair, Kevin D. Ashley, Ran Chen, Preethi Sureshkumar, Chen Wang, Eric Nyberg, Vern R. Walker\",\"doi\":\"10.1145/2746090.2746096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents first results from a proof of feasibility experiment in conceptual legal document retrieval in a particular domain (involving vaccine injury compensation). The conceptual markup of documents is done automatically using LUIMA, a law-specific semantic extraction toolbox based on the UIMA framework. The system consists of modules for automatic sub-sentence level annotation, machine learning based sentence annotation, basic retrieval using Apache Lucene and a machine learning based reranking of retrieved documents. In a leave-one-out experiment on a limited corpus, the resulting rankings scored higher for most tested queries than baseline rankings created using a commercial full-text legal information system.\",\"PeriodicalId\":309125,\"journal\":{\"name\":\"Proceedings of the 15th International Conference on Artificial Intelligence and Law\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th International Conference on Artificial Intelligence and Law\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746090.2746096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746090.2746096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Introducing LUIMA: an experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools
This paper presents first results from a proof of feasibility experiment in conceptual legal document retrieval in a particular domain (involving vaccine injury compensation). The conceptual markup of documents is done automatically using LUIMA, a law-specific semantic extraction toolbox based on the UIMA framework. The system consists of modules for automatic sub-sentence level annotation, machine learning based sentence annotation, basic retrieval using Apache Lucene and a machine learning based reranking of retrieved documents. In a leave-one-out experiment on a limited corpus, the resulting rankings scored higher for most tested queries than baseline rankings created using a commercial full-text legal information system.