{"title":"基于数据和物理模型的大型工厂RUL预测混合模型的开发","authors":"E. Öztürk","doi":"10.23967/wccm-apcom.2022.040","DOIUrl":null,"url":null,"abstract":". Large plants in the process industry are monitored and maintained at regular intervals and repeatedly maintenance is either too early or too late. This causes unnecessary costs due to technicians, spare parts procurement as well as delivery issues and to high downtime costs due to unexpected shutdowns. In this context, the Remaining Useful Life (RUL) plays a major role, as it is an indicator of how long a machine or component can run without breakdown, repair or replacement. By predicting RUL using predictive maintenance, maintenance can be better planned, operational efficiency optimized, and unplanned downtime avoided. Optimizing the prediction accuracy should therefore always be in the foreground and is therefore the topic of this paper.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a hybrid model for large-scale plant RUL prediction based on data and physical models\",\"authors\":\"E. Öztürk\",\"doi\":\"10.23967/wccm-apcom.2022.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Large plants in the process industry are monitored and maintained at regular intervals and repeatedly maintenance is either too early or too late. This causes unnecessary costs due to technicians, spare parts procurement as well as delivery issues and to high downtime costs due to unexpected shutdowns. In this context, the Remaining Useful Life (RUL) plays a major role, as it is an indicator of how long a machine or component can run without breakdown, repair or replacement. By predicting RUL using predictive maintenance, maintenance can be better planned, operational efficiency optimized, and unplanned downtime avoided. Optimizing the prediction accuracy should therefore always be in the foreground and is therefore the topic of this paper.\",\"PeriodicalId\":429847,\"journal\":{\"name\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/wccm-apcom.2022.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/wccm-apcom.2022.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a hybrid model for large-scale plant RUL prediction based on data and physical models
. Large plants in the process industry are monitored and maintained at regular intervals and repeatedly maintenance is either too early or too late. This causes unnecessary costs due to technicians, spare parts procurement as well as delivery issues and to high downtime costs due to unexpected shutdowns. In this context, the Remaining Useful Life (RUL) plays a major role, as it is an indicator of how long a machine or component can run without breakdown, repair or replacement. By predicting RUL using predictive maintenance, maintenance can be better planned, operational efficiency optimized, and unplanned downtime avoided. Optimizing the prediction accuracy should therefore always be in the foreground and is therefore the topic of this paper.