TARC:多模态生物识别系统的新型分数融合方案

Kamlesh Tiwari, A. Nigam, Phalguni Gupta
{"title":"TARC:多模态生物识别系统的新型分数融合方案","authors":"Kamlesh Tiwari, A. Nigam, Phalguni Gupta","doi":"10.1109/CIBIM.2014.7015443","DOIUrl":null,"url":null,"abstract":"This paper proposes a score level fusion scheme for a multimodal biometric system. Accuracy and reliability of a system are improved by utilizing more than one samples. Every matching of a biometric sample with its corresponding biometric sample in the database produces a matching score. There multiple scores from different biometric samples are fused for further utilization. It proposes an efficient threshold alignment and range compression scheme for score normalization. It uses statistical properties of biometric score distribution. The proposed scheme has been tested over a multimodal database which is constructed by using three publicly available database viz. FVC2006-DB2-A of fingerprint, CASIA-V4-Lamp of iris and PolyU of palmprint. Experimental results have shown the significant performance boost.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"TARC: A novel score fusion scheme for multimodal biometric systems\",\"authors\":\"Kamlesh Tiwari, A. Nigam, Phalguni Gupta\",\"doi\":\"10.1109/CIBIM.2014.7015443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a score level fusion scheme for a multimodal biometric system. Accuracy and reliability of a system are improved by utilizing more than one samples. Every matching of a biometric sample with its corresponding biometric sample in the database produces a matching score. There multiple scores from different biometric samples are fused for further utilization. It proposes an efficient threshold alignment and range compression scheme for score normalization. It uses statistical properties of biometric score distribution. The proposed scheme has been tested over a multimodal database which is constructed by using three publicly available database viz. FVC2006-DB2-A of fingerprint, CASIA-V4-Lamp of iris and PolyU of palmprint. Experimental results have shown the significant performance boost.\",\"PeriodicalId\":432938,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBIM.2014.7015443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种多模态生物识别系统的分数级融合方案。利用多个样本可以提高系统的准确性和可靠性。生物识别样本与数据库中相应生物识别样本的每次匹配都会产生一个匹配分数。来自不同生物识别样本的多个得分被融合起来,以便进一步利用。它为分数标准化提出了一种高效的阈值对齐和范围压缩方案。它利用了生物识别分数分布的统计特性。提议的方案已在多模态数据库中进行了测试,该数据库是利用三个公开可用的数据库(即指纹的 FVC2006-DB2-A、虹膜的 CASIA-V4-Lamp 和掌纹的 PolyU)构建的。实验结果表明,该系统的性能得到了显著提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TARC: A novel score fusion scheme for multimodal biometric systems
This paper proposes a score level fusion scheme for a multimodal biometric system. Accuracy and reliability of a system are improved by utilizing more than one samples. Every matching of a biometric sample with its corresponding biometric sample in the database produces a matching score. There multiple scores from different biometric samples are fused for further utilization. It proposes an efficient threshold alignment and range compression scheme for score normalization. It uses statistical properties of biometric score distribution. The proposed scheme has been tested over a multimodal database which is constructed by using three publicly available database viz. FVC2006-DB2-A of fingerprint, CASIA-V4-Lamp of iris and PolyU of palmprint. Experimental results have shown the significant performance boost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信