R. Funahashi, T. Mihara, M. Mikami, S. Urata, N. Ando
{"title":"热电氧化物组件发电","authors":"R. Funahashi, T. Mihara, M. Mikami, S. Urata, N. Ando","doi":"10.1109/ICT.2005.1519947","DOIUrl":null,"url":null,"abstract":"Different versions of a thermoelectric unicouple composed of p-type Ca/sub 2.7/Bi/sub 0.3/Co/sub 4/O/sub 9/ (Co-349) and n-type La/sub 0.9/Bi/sub 0.1/NiO/sub 3/ (Ni-113) bulks were constructed using Ag paste containing p- and n-type oxide powders, for connection between p- or n-legs and Ag electrodes, respectively. Open-circuit voltage V/sub 0/ of the unicouple connected using Ag paste containing 6wt% of the oxide powders reaches 100 mV at a hot-side temperature T/sub H/ of 1073 K and a temperature difference AT of 500 K in air. Internal resistance R/sub I/ of this unicouple is 26.2 m/spl Omega/ at 1073 K in air and decreases with increasing temperature. Maximum output power P/sub max/, evaluated using the formula P/sub max/ = V/sub 0//sup 2//4R/sub I/, is 94 mW at 1073 K (/spl Delta/T= 500 K) and increases with temperature. This value corresponds to a volume power density of 0.66 W/cm/sup 3/. The incorporation of oxide powders in Ag paste is shown to be effective to reduce the contact resistance and the thermal hysteresis effect at oxide/metal junctions. High power density is a strong point of thermoelectric generation. Exploitation of this salient characteristic would make thermoelectric modules promising candidates for mobile power applications. Here we show how power can be generated using a small thermoelectric module composed of 140 pairs of oxide thermoelectric unicouples. The module weighs 19.8 g and its dimensions are 53 mm long, 32 mm wide, and 5.0 mm thick. The hot-pressed thermoelectric oxide bulk materials used were connected with an Ag paste, incorporating 6wt% of oxide powder, and Ag electrodes. The module's V/sub 0/ increases with increasing hot-side temperature (T/sub H/) and reaches 4.5 V at a T/sub H/ of 1072 K in air. No deterioration in output power was seen when power generation was carried out ten times at a T/sub H/ of 723 K with intermediate cooling to room temperature. The module was successfully used to charge a lithium-ion battery in a mobile phone.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power generation of thermoelectric oxide modules\",\"authors\":\"R. Funahashi, T. Mihara, M. Mikami, S. Urata, N. Ando\",\"doi\":\"10.1109/ICT.2005.1519947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different versions of a thermoelectric unicouple composed of p-type Ca/sub 2.7/Bi/sub 0.3/Co/sub 4/O/sub 9/ (Co-349) and n-type La/sub 0.9/Bi/sub 0.1/NiO/sub 3/ (Ni-113) bulks were constructed using Ag paste containing p- and n-type oxide powders, for connection between p- or n-legs and Ag electrodes, respectively. Open-circuit voltage V/sub 0/ of the unicouple connected using Ag paste containing 6wt% of the oxide powders reaches 100 mV at a hot-side temperature T/sub H/ of 1073 K and a temperature difference AT of 500 K in air. Internal resistance R/sub I/ of this unicouple is 26.2 m/spl Omega/ at 1073 K in air and decreases with increasing temperature. Maximum output power P/sub max/, evaluated using the formula P/sub max/ = V/sub 0//sup 2//4R/sub I/, is 94 mW at 1073 K (/spl Delta/T= 500 K) and increases with temperature. This value corresponds to a volume power density of 0.66 W/cm/sup 3/. The incorporation of oxide powders in Ag paste is shown to be effective to reduce the contact resistance and the thermal hysteresis effect at oxide/metal junctions. High power density is a strong point of thermoelectric generation. Exploitation of this salient characteristic would make thermoelectric modules promising candidates for mobile power applications. Here we show how power can be generated using a small thermoelectric module composed of 140 pairs of oxide thermoelectric unicouples. The module weighs 19.8 g and its dimensions are 53 mm long, 32 mm wide, and 5.0 mm thick. The hot-pressed thermoelectric oxide bulk materials used were connected with an Ag paste, incorporating 6wt% of oxide powder, and Ag electrodes. The module's V/sub 0/ increases with increasing hot-side temperature (T/sub H/) and reaches 4.5 V at a T/sub H/ of 1072 K in air. No deterioration in output power was seen when power generation was carried out ten times at a T/sub H/ of 723 K with intermediate cooling to room temperature. The module was successfully used to charge a lithium-ion battery in a mobile phone.\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Different versions of a thermoelectric unicouple composed of p-type Ca/sub 2.7/Bi/sub 0.3/Co/sub 4/O/sub 9/ (Co-349) and n-type La/sub 0.9/Bi/sub 0.1/NiO/sub 3/ (Ni-113) bulks were constructed using Ag paste containing p- and n-type oxide powders, for connection between p- or n-legs and Ag electrodes, respectively. Open-circuit voltage V/sub 0/ of the unicouple connected using Ag paste containing 6wt% of the oxide powders reaches 100 mV at a hot-side temperature T/sub H/ of 1073 K and a temperature difference AT of 500 K in air. Internal resistance R/sub I/ of this unicouple is 26.2 m/spl Omega/ at 1073 K in air and decreases with increasing temperature. Maximum output power P/sub max/, evaluated using the formula P/sub max/ = V/sub 0//sup 2//4R/sub I/, is 94 mW at 1073 K (/spl Delta/T= 500 K) and increases with temperature. This value corresponds to a volume power density of 0.66 W/cm/sup 3/. The incorporation of oxide powders in Ag paste is shown to be effective to reduce the contact resistance and the thermal hysteresis effect at oxide/metal junctions. High power density is a strong point of thermoelectric generation. Exploitation of this salient characteristic would make thermoelectric modules promising candidates for mobile power applications. Here we show how power can be generated using a small thermoelectric module composed of 140 pairs of oxide thermoelectric unicouples. The module weighs 19.8 g and its dimensions are 53 mm long, 32 mm wide, and 5.0 mm thick. The hot-pressed thermoelectric oxide bulk materials used were connected with an Ag paste, incorporating 6wt% of oxide powder, and Ag electrodes. The module's V/sub 0/ increases with increasing hot-side temperature (T/sub H/) and reaches 4.5 V at a T/sub H/ of 1072 K in air. No deterioration in output power was seen when power generation was carried out ten times at a T/sub H/ of 723 K with intermediate cooling to room temperature. The module was successfully used to charge a lithium-ion battery in a mobile phone.