高纵横比微通道中超疏水表面的蒸汽流冷凝

Mirvahid Mohammadpour Chehrghani, Taher Abbasiasl, Ghazaleh Gharib, A. Koşar, A. Sadaghiani
{"title":"高纵横比微通道中超疏水表面的蒸汽流冷凝","authors":"Mirvahid Mohammadpour Chehrghani, Taher Abbasiasl, Ghazaleh Gharib, A. Koşar, A. Sadaghiani","doi":"10.1115/icnmm2020-1070","DOIUrl":null,"url":null,"abstract":"\n Steam flow condensation has a wide range of applications in the industry such as in air conditioning, refrigeration, and thermal power plants. Condensation of steam on highly hydrophobic surfaces has resulted in notable heat transfer improvement compared to conventional hydrophilic surfaces. Dropwise condensation and increased droplet mobility are the main reason for thermal performance enhancement of superhydrophobic surfaces. Although there are considerable reports of enhanced thermal transport behavior of highly hydrophobic surfaces on steam condensation, the literature lacks sufficient investigation on flow condensation of steam, such as the effect of average vapor quality change on heat transfer rate.\n Unlike gravity-driven droplet departure in quiescent dropwise condensation, droplet departure sizes in flow condensation are governed by flow-droplet shear forces and droplet-surface adhesive forces. This work experimentally investigates steam flow condensation on nanotextured highly hydrophobic and slightly hydrophobic surfaces. The experimental setup consists of a reservoir, boiler, superheater, condensation chamber (test section), pre-condenser (to adjust the inlet quality), a post condenser, and a pump. A high aspect ratio microchannel was used as the test section. Different mass fluxes and inlet vapor qualities were used for the experimentations. Visualization studies were performed to analyze droplet dynamics such as droplet departure and coalescence in flow condensation. It is shown that for both surfaces increase condensation heat transfer coefficient were a function of both average quality and mass flux. Increase in mass flux from G = 8 kg/m2s to G = 14 kg/m2s, resulted in 65% and 60% enhancement in condensation heat transfer coefficient of slightly hydrophobic and highly hydrophobic surfaces respectively.","PeriodicalId":198176,"journal":{"name":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steam Flow Condensation on Superhydrophobic Surfaces in a High Aspect Ratio Microchannel\",\"authors\":\"Mirvahid Mohammadpour Chehrghani, Taher Abbasiasl, Ghazaleh Gharib, A. Koşar, A. Sadaghiani\",\"doi\":\"10.1115/icnmm2020-1070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Steam flow condensation has a wide range of applications in the industry such as in air conditioning, refrigeration, and thermal power plants. Condensation of steam on highly hydrophobic surfaces has resulted in notable heat transfer improvement compared to conventional hydrophilic surfaces. Dropwise condensation and increased droplet mobility are the main reason for thermal performance enhancement of superhydrophobic surfaces. Although there are considerable reports of enhanced thermal transport behavior of highly hydrophobic surfaces on steam condensation, the literature lacks sufficient investigation on flow condensation of steam, such as the effect of average vapor quality change on heat transfer rate.\\n Unlike gravity-driven droplet departure in quiescent dropwise condensation, droplet departure sizes in flow condensation are governed by flow-droplet shear forces and droplet-surface adhesive forces. This work experimentally investigates steam flow condensation on nanotextured highly hydrophobic and slightly hydrophobic surfaces. The experimental setup consists of a reservoir, boiler, superheater, condensation chamber (test section), pre-condenser (to adjust the inlet quality), a post condenser, and a pump. A high aspect ratio microchannel was used as the test section. Different mass fluxes and inlet vapor qualities were used for the experimentations. Visualization studies were performed to analyze droplet dynamics such as droplet departure and coalescence in flow condensation. It is shown that for both surfaces increase condensation heat transfer coefficient were a function of both average quality and mass flux. Increase in mass flux from G = 8 kg/m2s to G = 14 kg/m2s, resulted in 65% and 60% enhancement in condensation heat transfer coefficient of slightly hydrophobic and highly hydrophobic surfaces respectively.\",\"PeriodicalId\":198176,\"journal\":{\"name\":\"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icnmm2020-1070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icnmm2020-1070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蒸汽流冷凝在空调、制冷、火电厂等行业中有着广泛的应用。与传统的亲水表面相比,蒸汽在高度疏水表面上的冷凝导致了显着的传热改善。液滴凝结和液滴迁移率的提高是超疏水表面热性能增强的主要原因。虽然已有大量研究报道了高疏水表面对蒸汽冷凝的热传递行为增强,但文献缺乏对蒸汽流动冷凝的充分研究,如平均蒸汽质量变化对传热速率的影响。与静态滴状冷凝中重力驱动的液滴偏离不同,流动冷凝中液滴偏离大小受流-液滴剪切力和液滴表面粘附力的影响。本文通过实验研究了纳米结构高度疏水和轻度疏水表面上的蒸汽冷凝现象。实验装置由贮液器、锅炉、过热器、冷凝室(测试部分)、预冷凝器(调整进口质量)、后冷凝器和泵组成。采用高纵横比微通道作为测试截面。采用不同的质量通量和进口蒸汽质量进行实验。通过可视化研究,分析了流动冷凝过程中液滴的分离和聚并等动力学过程。结果表明,两种表面的凝结换热系数都是平均质量和质量通量的函数。当质量通量从G = 8 kg/m2s增加到G = 14 kg/m2s时,微疏水表面和高度疏水表面的冷凝换热系数分别提高了65%和60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steam Flow Condensation on Superhydrophobic Surfaces in a High Aspect Ratio Microchannel
Steam flow condensation has a wide range of applications in the industry such as in air conditioning, refrigeration, and thermal power plants. Condensation of steam on highly hydrophobic surfaces has resulted in notable heat transfer improvement compared to conventional hydrophilic surfaces. Dropwise condensation and increased droplet mobility are the main reason for thermal performance enhancement of superhydrophobic surfaces. Although there are considerable reports of enhanced thermal transport behavior of highly hydrophobic surfaces on steam condensation, the literature lacks sufficient investigation on flow condensation of steam, such as the effect of average vapor quality change on heat transfer rate. Unlike gravity-driven droplet departure in quiescent dropwise condensation, droplet departure sizes in flow condensation are governed by flow-droplet shear forces and droplet-surface adhesive forces. This work experimentally investigates steam flow condensation on nanotextured highly hydrophobic and slightly hydrophobic surfaces. The experimental setup consists of a reservoir, boiler, superheater, condensation chamber (test section), pre-condenser (to adjust the inlet quality), a post condenser, and a pump. A high aspect ratio microchannel was used as the test section. Different mass fluxes and inlet vapor qualities were used for the experimentations. Visualization studies were performed to analyze droplet dynamics such as droplet departure and coalescence in flow condensation. It is shown that for both surfaces increase condensation heat transfer coefficient were a function of both average quality and mass flux. Increase in mass flux from G = 8 kg/m2s to G = 14 kg/m2s, resulted in 65% and 60% enhancement in condensation heat transfer coefficient of slightly hydrophobic and highly hydrophobic surfaces respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信