电力负荷风险调整预测

Saahil Shenoy, D. Gorinevsky
{"title":"电力负荷风险调整预测","authors":"Saahil Shenoy, D. Gorinevsky","doi":"10.1109/ACC.2014.6859465","DOIUrl":null,"url":null,"abstract":"Load forecasting of energy demand is usually focused on mean values in related statistical models and ignores rare peak events. This paper provides Extreme Value Theory analysis of the peak events in electrical power load demand. It estimates risk of the peak events by combining forecast of the mean with extreme value modeling of distribution tail. The approach is demonstrated for electric load demand data for a US utility. The problem is to find the forecast margins that keep the risk of demand exceeding forecast plus the margin to one event per year. The long tail model of the peak events is more accurate and yields 50% larger margin compared to the normal distribution model. These results show that the long tail behavior of the forecast errors must be taken into account when trying to keep outage risk low.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Risk adjusted forecasting of electric power load\",\"authors\":\"Saahil Shenoy, D. Gorinevsky\",\"doi\":\"10.1109/ACC.2014.6859465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load forecasting of energy demand is usually focused on mean values in related statistical models and ignores rare peak events. This paper provides Extreme Value Theory analysis of the peak events in electrical power load demand. It estimates risk of the peak events by combining forecast of the mean with extreme value modeling of distribution tail. The approach is demonstrated for electric load demand data for a US utility. The problem is to find the forecast margins that keep the risk of demand exceeding forecast plus the margin to one event per year. The long tail model of the peak events is more accurate and yields 50% larger margin compared to the normal distribution model. These results show that the long tail behavior of the forecast errors must be taken into account when trying to keep outage risk low.\",\"PeriodicalId\":369729,\"journal\":{\"name\":\"2014 American Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2014.6859465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

能源需求负荷预测通常集中在相关统计模型的平均值上,而忽略了罕见的峰值事件。本文用极值理论对电力负荷需求峰值事件进行了分析。将均值预测与分布尾极值建模相结合,对峰值事件的风险进行估计。该方法以美国一家公用事业公司的电力负荷需求数据为例进行了演示。问题是找到预测边际,使需求超过预测的风险加上每年一次事件的边际。与正态分布模型相比,峰值事件的长尾模型更准确,产生的边际比正态分布模型大50%。这些结果表明,当试图保持低停机风险时,必须考虑预测误差的长尾行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk adjusted forecasting of electric power load
Load forecasting of energy demand is usually focused on mean values in related statistical models and ignores rare peak events. This paper provides Extreme Value Theory analysis of the peak events in electrical power load demand. It estimates risk of the peak events by combining forecast of the mean with extreme value modeling of distribution tail. The approach is demonstrated for electric load demand data for a US utility. The problem is to find the forecast margins that keep the risk of demand exceeding forecast plus the margin to one event per year. The long tail model of the peak events is more accurate and yields 50% larger margin compared to the normal distribution model. These results show that the long tail behavior of the forecast errors must be taken into account when trying to keep outage risk low.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信