Aarushi Khandelwal, T. K. Leong, Yarong Yang, L. K. Wee, F. J. G. Clemente, T. Venkatesan, H. Jani
{"title":"现代物理演示与DIY智能手机光谱仪","authors":"Aarushi Khandelwal, T. K. Leong, Yarong Yang, L. K. Wee, F. J. G. Clemente, T. Venkatesan, H. Jani","doi":"10.1142/S2661339522500032","DOIUrl":null,"url":null,"abstract":"Smartphones are widely available and used extensively by students worldwide. These phones often come equipped with high-quality cameras that can be combined with basic optical elements to build a cost-effective DIY spectrometer. Here, we discuss a series of demonstrations and pedagogical exercises, accompanied by our DIY diffractive spectrometer that uses a free web platform for instant spectral analysis. Specifically, these demonstrations can be used to encourage hands-on and inquiry-based learning of wave optics, broadband versus discrete light emission, quantization, Heisenberg’s energy-time uncertainty relation, and the use of spectroscopy in day-to-day life. Hence, these simple tools can be readily deployed in high school classrooms to communicate the practices of science.","PeriodicalId":112108,"journal":{"name":"The Physics Educator","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern Physics Demonstrations with DIY Smartphone Spectrometers\",\"authors\":\"Aarushi Khandelwal, T. K. Leong, Yarong Yang, L. K. Wee, F. J. G. Clemente, T. Venkatesan, H. Jani\",\"doi\":\"10.1142/S2661339522500032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smartphones are widely available and used extensively by students worldwide. These phones often come equipped with high-quality cameras that can be combined with basic optical elements to build a cost-effective DIY spectrometer. Here, we discuss a series of demonstrations and pedagogical exercises, accompanied by our DIY diffractive spectrometer that uses a free web platform for instant spectral analysis. Specifically, these demonstrations can be used to encourage hands-on and inquiry-based learning of wave optics, broadband versus discrete light emission, quantization, Heisenberg’s energy-time uncertainty relation, and the use of spectroscopy in day-to-day life. Hence, these simple tools can be readily deployed in high school classrooms to communicate the practices of science.\",\"PeriodicalId\":112108,\"journal\":{\"name\":\"The Physics Educator\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Physics Educator\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2661339522500032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Physics Educator","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2661339522500032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modern Physics Demonstrations with DIY Smartphone Spectrometers
Smartphones are widely available and used extensively by students worldwide. These phones often come equipped with high-quality cameras that can be combined with basic optical elements to build a cost-effective DIY spectrometer. Here, we discuss a series of demonstrations and pedagogical exercises, accompanied by our DIY diffractive spectrometer that uses a free web platform for instant spectral analysis. Specifically, these demonstrations can be used to encourage hands-on and inquiry-based learning of wave optics, broadband versus discrete light emission, quantization, Heisenberg’s energy-time uncertainty relation, and the use of spectroscopy in day-to-day life. Hence, these simple tools can be readily deployed in high school classrooms to communicate the practices of science.