自适应神经网络研究进展

R. Palnitkar, J. Cannady
{"title":"自适应神经网络研究进展","authors":"R. Palnitkar, J. Cannady","doi":"10.1109/SECON.2004.1287896","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are inspired from their biological counterparts. Adaptation is one of the most important features of both types of networks. Adaptive artificial neural networks are a class of networks used in dynamic environments. They are characterized by online learning. A number of techniques are used to provide adaptability to neural networks: adaptation by weight modification, by neuronal property modification, and by network structure modification. A brief review of various types of implementations is provided.","PeriodicalId":324953,"journal":{"name":"IEEE SoutheastCon, 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Review of Adaptive Neural Networks\",\"authors\":\"R. Palnitkar, J. Cannady\",\"doi\":\"10.1109/SECON.2004.1287896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are inspired from their biological counterparts. Adaptation is one of the most important features of both types of networks. Adaptive artificial neural networks are a class of networks used in dynamic environments. They are characterized by online learning. A number of techniques are used to provide adaptability to neural networks: adaptation by weight modification, by neuronal property modification, and by network structure modification. A brief review of various types of implementations is provided.\",\"PeriodicalId\":324953,\"journal\":{\"name\":\"IEEE SoutheastCon, 2004. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SoutheastCon, 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2004.1287896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2004.1287896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

人工神经网络的灵感来自于它们的生物对应物。适应是这两种网络最重要的特征之一。自适应人工神经网络是一类用于动态环境的网络。他们的特点是在线学习。许多技术被用来提供神经网络的适应性:通过权重修改的适应性,通过神经元属性修改的适应性,以及通过网络结构修改的适应性。本文简要回顾了各种类型的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Adaptive Neural Networks
Artificial neural networks are inspired from their biological counterparts. Adaptation is one of the most important features of both types of networks. Adaptive artificial neural networks are a class of networks used in dynamic environments. They are characterized by online learning. A number of techniques are used to provide adaptability to neural networks: adaptation by weight modification, by neuronal property modification, and by network structure modification. A brief review of various types of implementations is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信