短期电力负荷预测的比较研究:以EVNHCMC为例

N. T. Dung, T. T. Hà, N. Phuong
{"title":"短期电力负荷预测的比较研究:以EVNHCMC为例","authors":"N. T. Dung, T. T. Hà, N. Phuong","doi":"10.1109/GTSD.2018.8595514","DOIUrl":null,"url":null,"abstract":"Short-term load forecasting (STLF) plays an important role in building business strategies and ensuring reliability and safe operation of any electric power system. There are many different methods used for short-term forecasting, including regression models, time series, neural networks, expert systems, fuzzy logic, machine learning, and statistical algorithms. There are always debates about which algorithms are the best for electric load forecasting. In this paper, we compared the SVR (Support Vector Regression), NN (Neural Network) and RFR (Random Forest Regression) algorithms, based on the dataset of EVNHCMC to find out a suitable STLF for the dataset.","PeriodicalId":344653,"journal":{"name":"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Short-term Electric Load Forecasting: Case Study EVNHCMC\",\"authors\":\"N. T. Dung, T. T. Hà, N. Phuong\",\"doi\":\"10.1109/GTSD.2018.8595514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-term load forecasting (STLF) plays an important role in building business strategies and ensuring reliability and safe operation of any electric power system. There are many different methods used for short-term forecasting, including regression models, time series, neural networks, expert systems, fuzzy logic, machine learning, and statistical algorithms. There are always debates about which algorithms are the best for electric load forecasting. In this paper, we compared the SVR (Support Vector Regression), NN (Neural Network) and RFR (Random Forest Regression) algorithms, based on the dataset of EVNHCMC to find out a suitable STLF for the dataset.\",\"PeriodicalId\":344653,\"journal\":{\"name\":\"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GTSD.2018.8595514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD.2018.8595514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

短期负荷预测对于制定电力系统的经营战略,保证电力系统的可靠性和安全运行具有重要的作用。有许多不同的方法用于短期预测,包括回归模型、时间序列、神经网络、专家系统、模糊逻辑、机器学习和统计算法。对于哪种算法最适合电力负荷预测,一直存在争议。本文在EVNHCMC数据集的基础上,对支持向量回归(SVR)、神经网络(NN)和随机森林回归(RFR)算法进行比较,找出适合该数据集的STLF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Short-term Electric Load Forecasting: Case Study EVNHCMC
Short-term load forecasting (STLF) plays an important role in building business strategies and ensuring reliability and safe operation of any electric power system. There are many different methods used for short-term forecasting, including regression models, time series, neural networks, expert systems, fuzzy logic, machine learning, and statistical algorithms. There are always debates about which algorithms are the best for electric load forecasting. In this paper, we compared the SVR (Support Vector Regression), NN (Neural Network) and RFR (Random Forest Regression) algorithms, based on the dataset of EVNHCMC to find out a suitable STLF for the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信