高温应力加速原子扩散导致改性9Cr-1Mo钢强化显微织构消失

Yifan Luo, H. Miura
{"title":"高温应力加速原子扩散导致改性9Cr-1Mo钢强化显微织构消失","authors":"Yifan Luo, H. Miura","doi":"10.1115/IMECE2018-87368","DOIUrl":null,"url":null,"abstract":"The change of the lath martensitic structure in the modified 9Cr-1Mo steel was observed in the specimens after the intermittent fatigue and creep tests using EBSD (Electron Back-Scatter Diffraction) analysis. The Kernel Average Misorientation (KAM) value and the image quality (IQ) value obtained from the EBSD analysis were used for the quantitative evaluation of the change in the lath martensitic texture. It was found that the lath martensitic texture started to disappear clearly after 107–108 cycles under the fatigue loading at temperatures higher than 500°C when the amplitude of the applied stress exceeded a critical value. Similar change also appeared in the creep test. The critical value decreased monotonically with the increase of the test temperature. This microstructure change decreased the strength of the alloy drastically.\n In order to explicate the dominant factors of the change quantitatively, the changes of the microstructure and the strength of the alloy were continuously measured by applying an intermittent creep test at elevated temperatures. It was found that the effective activation energy of atomic diffusion decreased drastically under the application of mechanical stress at elevated temperatures. The effective diffusion length for the disappearance was about 9 μm, and this value was much larger than the initial pitch of the lath martensitic texture of about 0.5 μm, and smaller than the average size of the initial austenite grains of about 20 μm. Therefore, the stress-induced acceleration of atomic diffusion was attributed to the disappearance of the initially strengthened micro texture. The change of the micro texture caused the drastic decrease in the yielding strength of this alloy. Finally, the prediction equation of the lifetime of the alloy was proposed by considering the stress-induced acceleration of atomic diffusion under the application of mechanical stress at elevated temperatures.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disappearance of Strengthened Micro Texture of Modified 9Cr-1Mo Steel Caused by Stress-Induced Acceleration of Atomic Diffusion at Elevated Temperatures\",\"authors\":\"Yifan Luo, H. Miura\",\"doi\":\"10.1115/IMECE2018-87368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The change of the lath martensitic structure in the modified 9Cr-1Mo steel was observed in the specimens after the intermittent fatigue and creep tests using EBSD (Electron Back-Scatter Diffraction) analysis. The Kernel Average Misorientation (KAM) value and the image quality (IQ) value obtained from the EBSD analysis were used for the quantitative evaluation of the change in the lath martensitic texture. It was found that the lath martensitic texture started to disappear clearly after 107–108 cycles under the fatigue loading at temperatures higher than 500°C when the amplitude of the applied stress exceeded a critical value. Similar change also appeared in the creep test. The critical value decreased monotonically with the increase of the test temperature. This microstructure change decreased the strength of the alloy drastically.\\n In order to explicate the dominant factors of the change quantitatively, the changes of the microstructure and the strength of the alloy were continuously measured by applying an intermittent creep test at elevated temperatures. It was found that the effective activation energy of atomic diffusion decreased drastically under the application of mechanical stress at elevated temperatures. The effective diffusion length for the disappearance was about 9 μm, and this value was much larger than the initial pitch of the lath martensitic texture of about 0.5 μm, and smaller than the average size of the initial austenite grains of about 20 μm. Therefore, the stress-induced acceleration of atomic diffusion was attributed to the disappearance of the initially strengthened micro texture. The change of the micro texture caused the drastic decrease in the yielding strength of this alloy. Finally, the prediction equation of the lifetime of the alloy was proposed by considering the stress-induced acceleration of atomic diffusion under the application of mechanical stress at elevated temperatures.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用电子背散射衍射(EBSD)对9Cr-1Mo改性钢进行间歇疲劳和蠕变试验,观察到改性钢板条马氏体组织的变化。利用EBSD分析得到的核平均取向偏差(KAM)值和图像质量(IQ)值定量评价板条马氏体织构的变化。在高于500℃的温度下,当外加应力幅值超过临界值时,在107 ~ 108次循环后,板条马氏体织构开始明显消失。在蠕变试验中也出现了类似的变化。临界值随试验温度的升高而单调降低。这种显微组织的变化使合金的强度急剧下降。为了定量地阐明这种变化的主导因素,采用高温间歇蠕变试验,连续测量了合金的组织变化和强度变化。结果表明,在高温机械应力作用下,原子扩散的有效活化能急剧下降。消失的有效扩散长度约为9 μm,远远大于板条马氏体织构的初始间距约0.5 μm,小于初始奥氏体晶粒的平均尺寸约20 μm。因此,应力引起的原子扩散加速可归因于最初增强的微观织构的消失。微观织构的变化导致合金屈服强度急剧下降。最后,考虑高温机械应力作用下原子扩散的应力加速,建立了合金寿命的预测方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disappearance of Strengthened Micro Texture of Modified 9Cr-1Mo Steel Caused by Stress-Induced Acceleration of Atomic Diffusion at Elevated Temperatures
The change of the lath martensitic structure in the modified 9Cr-1Mo steel was observed in the specimens after the intermittent fatigue and creep tests using EBSD (Electron Back-Scatter Diffraction) analysis. The Kernel Average Misorientation (KAM) value and the image quality (IQ) value obtained from the EBSD analysis were used for the quantitative evaluation of the change in the lath martensitic texture. It was found that the lath martensitic texture started to disappear clearly after 107–108 cycles under the fatigue loading at temperatures higher than 500°C when the amplitude of the applied stress exceeded a critical value. Similar change also appeared in the creep test. The critical value decreased monotonically with the increase of the test temperature. This microstructure change decreased the strength of the alloy drastically. In order to explicate the dominant factors of the change quantitatively, the changes of the microstructure and the strength of the alloy were continuously measured by applying an intermittent creep test at elevated temperatures. It was found that the effective activation energy of atomic diffusion decreased drastically under the application of mechanical stress at elevated temperatures. The effective diffusion length for the disappearance was about 9 μm, and this value was much larger than the initial pitch of the lath martensitic texture of about 0.5 μm, and smaller than the average size of the initial austenite grains of about 20 μm. Therefore, the stress-induced acceleration of atomic diffusion was attributed to the disappearance of the initially strengthened micro texture. The change of the micro texture caused the drastic decrease in the yielding strength of this alloy. Finally, the prediction equation of the lifetime of the alloy was proposed by considering the stress-induced acceleration of atomic diffusion under the application of mechanical stress at elevated temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信