基于模糊Hopfield网络的分区聚类

Vahid Abrishami, G. T. Tabrizi, H. Deldari, Maryam Sabzevari
{"title":"基于模糊Hopfield网络的分区聚类","authors":"Vahid Abrishami, G. T. Tabrizi, H. Deldari, Maryam Sabzevari","doi":"10.1109/UKRICIS.2010.5898145","DOIUrl":null,"url":null,"abstract":"This paper proposes a new clustering algorithm which employs an improved stochastic competitive Hopfield network in order to organize data patterns into natural groups, or clusters, in an unsupervised manner. To overcome the problem of uncertainty for clustering, this Hopfield network employs a fuzzy based energy function. Additionally, a chaotic variable is introduced in order to escape from the local minima and gain a better clustering. By maximizing the degree of membership for each data item in a cluster using Hopfield network, we achieve a superior accuracy to that of the best existing algorithms such as optimal competitive Hopfield model, stochastic optimal competitive Hopfield network, k-means and genetic algorithm. The experimental results demonstrate the scalability and robustness of our algorithm over large datasets.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fuzzy based Hopfield network for partitional clustering\",\"authors\":\"Vahid Abrishami, G. T. Tabrizi, H. Deldari, Maryam Sabzevari\",\"doi\":\"10.1109/UKRICIS.2010.5898145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new clustering algorithm which employs an improved stochastic competitive Hopfield network in order to organize data patterns into natural groups, or clusters, in an unsupervised manner. To overcome the problem of uncertainty for clustering, this Hopfield network employs a fuzzy based energy function. Additionally, a chaotic variable is introduced in order to escape from the local minima and gain a better clustering. By maximizing the degree of membership for each data item in a cluster using Hopfield network, we achieve a superior accuracy to that of the best existing algorithms such as optimal competitive Hopfield model, stochastic optimal competitive Hopfield network, k-means and genetic algorithm. The experimental results demonstrate the scalability and robustness of our algorithm over large datasets.\",\"PeriodicalId\":359942,\"journal\":{\"name\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKRICIS.2010.5898145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的聚类算法,该算法采用改进的随机竞争Hopfield网络,以无监督的方式将数据模式组织成自然的组或簇。为了克服聚类的不确定性问题,该Hopfield网络采用了基于模糊的能量函数。此外,为了摆脱局部极小值,获得更好的聚类效果,引入了混沌变量。通过使用Hopfield网络最大化集群中每个数据项的隶属度,我们获得了优于现有最佳算法(如最优竞争Hopfield模型、随机最优竞争Hopfield网络、k-means和遗传算法)的精度。实验结果证明了该算法在大型数据集上的可扩展性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy based Hopfield network for partitional clustering
This paper proposes a new clustering algorithm which employs an improved stochastic competitive Hopfield network in order to organize data patterns into natural groups, or clusters, in an unsupervised manner. To overcome the problem of uncertainty for clustering, this Hopfield network employs a fuzzy based energy function. Additionally, a chaotic variable is introduced in order to escape from the local minima and gain a better clustering. By maximizing the degree of membership for each data item in a cluster using Hopfield network, we achieve a superior accuracy to that of the best existing algorithms such as optimal competitive Hopfield model, stochastic optimal competitive Hopfield network, k-means and genetic algorithm. The experimental results demonstrate the scalability and robustness of our algorithm over large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信