利用三维u网对微小血细胞图像设计精确的FISH探针检测

Chinmay Savadikar, S. Tahvilian, L. Baden, R. Reed, D. Leventon, P. Pagano, Bhushan Garware
{"title":"利用三维u网对微小血细胞图像设计精确的FISH探针检测","authors":"Chinmay Savadikar, S. Tahvilian, L. Baden, R. Reed, D. Leventon, P. Pagano, Bhushan Garware","doi":"10.1145/3371158.3371201","DOIUrl":null,"url":null,"abstract":"Fluorescence in-situ hybridization (FISH) is a molecular cytogenetic technique developed to detect or localize the presence or absence of specific DNA sequences or chromosomes. Lung LB is a FISH based confirmatory diagnostic test for lung cancer which detects circulating tumor cells (CTC) in clinical patients with indeterminate lung nodules. In this paper, we propose a novel approach to segment FISH probes using 3D U-Nets and highlight the limitations of traditional Computer Vision based segmentation techniques for microscopic images. We observe a significant reduction in false positive rates without losing any real verified CTC, thus helping to improve the efficiency of the pathologists and accuracy of Lung LB. The proposed method results in a average percentage reduction of 62.875% in the number of falsely detected CTCs over the commercially available tool on 20 clinical cases (~1,86,901 cells), while achieving an average of 94.72% recall across the cases, showing an improvement over the the recall of 72.9% of the the commercial system.","PeriodicalId":360747,"journal":{"name":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Designing Accurate FISH Probe Detection using 3D U-Nets on Microscopic Blood Cell Images\",\"authors\":\"Chinmay Savadikar, S. Tahvilian, L. Baden, R. Reed, D. Leventon, P. Pagano, Bhushan Garware\",\"doi\":\"10.1145/3371158.3371201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence in-situ hybridization (FISH) is a molecular cytogenetic technique developed to detect or localize the presence or absence of specific DNA sequences or chromosomes. Lung LB is a FISH based confirmatory diagnostic test for lung cancer which detects circulating tumor cells (CTC) in clinical patients with indeterminate lung nodules. In this paper, we propose a novel approach to segment FISH probes using 3D U-Nets and highlight the limitations of traditional Computer Vision based segmentation techniques for microscopic images. We observe a significant reduction in false positive rates without losing any real verified CTC, thus helping to improve the efficiency of the pathologists and accuracy of Lung LB. The proposed method results in a average percentage reduction of 62.875% in the number of falsely detected CTCs over the commercially available tool on 20 clinical cases (~1,86,901 cells), while achieving an average of 94.72% recall across the cases, showing an improvement over the the recall of 72.9% of the the commercial system.\",\"PeriodicalId\":360747,\"journal\":{\"name\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3371158.3371201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM IKDD CoDS and 25th COMAD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3371158.3371201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

荧光原位杂交(FISH)是一种分子细胞遗传学技术,用于检测或定位特定DNA序列或染色体的存在或缺失。肺LB是一种基于FISH的肺癌确诊性诊断试验,用于检测临床患者不确定肺结节的循环肿瘤细胞(CTC)。在本文中,我们提出了一种使用3D U-Nets分割FISH探针的新方法,并强调了传统基于计算机视觉的显微图像分割技术的局限性。我们观察到假阳性率的显著降低,而没有丢失任何实际验证的CTC,从而有助于提高病理学家的效率和肺LB的准确性。与市售工具相比,该方法在20例临床病例(~1,86,901个细胞)中错误检测的CTC数量平均减少了62.875%,同时实现了94.72%的平均召回率。比商用系统的72.9%的召回率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Designing Accurate FISH Probe Detection using 3D U-Nets on Microscopic Blood Cell Images
Fluorescence in-situ hybridization (FISH) is a molecular cytogenetic technique developed to detect or localize the presence or absence of specific DNA sequences or chromosomes. Lung LB is a FISH based confirmatory diagnostic test for lung cancer which detects circulating tumor cells (CTC) in clinical patients with indeterminate lung nodules. In this paper, we propose a novel approach to segment FISH probes using 3D U-Nets and highlight the limitations of traditional Computer Vision based segmentation techniques for microscopic images. We observe a significant reduction in false positive rates without losing any real verified CTC, thus helping to improve the efficiency of the pathologists and accuracy of Lung LB. The proposed method results in a average percentage reduction of 62.875% in the number of falsely detected CTCs over the commercially available tool on 20 clinical cases (~1,86,901 cells), while achieving an average of 94.72% recall across the cases, showing an improvement over the the recall of 72.9% of the the commercial system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信