平坦衰落信道上极点码的深度学习

A. Irawan, G. Witjaksono, W. Wibowo
{"title":"平坦衰落信道上极点码的深度学习","authors":"A. Irawan, G. Witjaksono, W. Wibowo","doi":"10.1109/ICAIIC.2019.8669025","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep-neural-networks scheme for decoding polar coded short packets. We consider packet transmission over frequency-flat quasi-static Rayleigh fading channels, where the channel coefficient is constant over a packet but changes packet-by-packet. Potential applications of the proposed technique are machine-type communications, messaging services, smart metering networks, and other wireless sensor networks requiring high reliability and low-latency. Computer simulations results confirm that even with simple codebook construction for an additive white Gaussian noise (AWGN) channel without fading, the proposed technique closes to the theoretical outage and achieves the coding gain in fading channel. Analyses of the learning epochs and training signal-to-noise power ratio (SNR) selections are also presented to demonstrate the effectiveness of the technique.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep Learning for Polar Codes over Flat Fading Channels\",\"authors\":\"A. Irawan, G. Witjaksono, W. Wibowo\",\"doi\":\"10.1109/ICAIIC.2019.8669025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a deep-neural-networks scheme for decoding polar coded short packets. We consider packet transmission over frequency-flat quasi-static Rayleigh fading channels, where the channel coefficient is constant over a packet but changes packet-by-packet. Potential applications of the proposed technique are machine-type communications, messaging services, smart metering networks, and other wireless sensor networks requiring high reliability and low-latency. Computer simulations results confirm that even with simple codebook construction for an additive white Gaussian noise (AWGN) channel without fading, the proposed technique closes to the theoretical outage and achieves the coding gain in fading channel. Analyses of the learning epochs and training signal-to-noise power ratio (SNR) selections are also presented to demonstrate the effectiveness of the technique.\",\"PeriodicalId\":273383,\"journal\":{\"name\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC.2019.8669025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于深度神经网络的极地编码短数据包解码方案。我们考虑在频率平坦的准静态瑞利衰落信道上的分组传输,其中信道系数在一个分组上是恒定的,但逐包变化。提出的技术的潜在应用是机器类型的通信、消息服务、智能计量网络和其他需要高可靠性和低延迟的无线传感器网络。计算机仿真结果表明,对于无衰落的加性高斯白噪声(AWGN)信道,即使采用简单的码本结构,所提出的技术也接近于理论中断,并达到衰落信道下的编码增益。通过对学习周期和训练信噪比选择的分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Polar Codes over Flat Fading Channels
This paper proposes a deep-neural-networks scheme for decoding polar coded short packets. We consider packet transmission over frequency-flat quasi-static Rayleigh fading channels, where the channel coefficient is constant over a packet but changes packet-by-packet. Potential applications of the proposed technique are machine-type communications, messaging services, smart metering networks, and other wireless sensor networks requiring high reliability and low-latency. Computer simulations results confirm that even with simple codebook construction for an additive white Gaussian noise (AWGN) channel without fading, the proposed technique closes to the theoretical outage and achieves the coding gain in fading channel. Analyses of the learning epochs and training signal-to-noise power ratio (SNR) selections are also presented to demonstrate the effectiveness of the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信