利用人工神经网络优化抛物线槽集热器的运行

O. M. Tzuc, A. Bassam, M. A. E. Soberanis, M. V. Caamal
{"title":"利用人工神经网络优化抛物线槽集热器的运行","authors":"O. M. Tzuc, A. Bassam, M. A. E. Soberanis, M. V. Caamal","doi":"10.1109/CSMH.2016.7947661","DOIUrl":null,"url":null,"abstract":"The present work describes the thermal efficiency optimization of parabolic trough collectors by combining a model of artificial neural network and computational optimization techniques. A feedforward neural network architecture is trained using experimental database from parabolic trough collector operations. Rim angle, inlet and outlet fluid temperatures, ambient temperature, water flow, direct solar radiation, and wind velocity were used as main input variables within the neural network model to estimate the thermal performance. The optimal operation conditions of parabolic trough collectors are established using the hybridization of optimization technique with neural network model to achieve optimal operation conditions of parabolic trough collector. The result indicated that methodology implemented is a feasible tool for parabolic trough collectors optimization.","PeriodicalId":340003,"journal":{"name":"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization operation of a parabolic trough collector using artificial neural network\",\"authors\":\"O. M. Tzuc, A. Bassam, M. A. E. Soberanis, M. V. Caamal\",\"doi\":\"10.1109/CSMH.2016.7947661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work describes the thermal efficiency optimization of parabolic trough collectors by combining a model of artificial neural network and computational optimization techniques. A feedforward neural network architecture is trained using experimental database from parabolic trough collector operations. Rim angle, inlet and outlet fluid temperatures, ambient temperature, water flow, direct solar radiation, and wind velocity were used as main input variables within the neural network model to estimate the thermal performance. The optimal operation conditions of parabolic trough collectors are established using the hybridization of optimization technique with neural network model to achieve optimal operation conditions of parabolic trough collector. The result indicated that methodology implemented is a feasible tool for parabolic trough collectors optimization.\",\"PeriodicalId\":340003,\"journal\":{\"name\":\"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMH.2016.7947661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 XVI International Congress of the Mexican Hydrogen Society (CSMH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMH.2016.7947661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将人工神经网络模型与计算优化技术相结合,对抛物面槽集热器的热效率进行了优化。利用抛物线槽收集器操作的实验数据库训练前馈神经网络结构。在神经网络模型中,以边缘角、进出口流体温度、环境温度、水流、太阳直射辐射和风速作为主要输入变量来估计热性能。采用优化技术与神经网络模型相结合的方法,建立了抛物线槽集热器的最优运行条件,实现了抛物线槽集热器的最优运行条件。结果表明,所实现的方法是抛物线槽集热器优化的可行工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization operation of a parabolic trough collector using artificial neural network
The present work describes the thermal efficiency optimization of parabolic trough collectors by combining a model of artificial neural network and computational optimization techniques. A feedforward neural network architecture is trained using experimental database from parabolic trough collector operations. Rim angle, inlet and outlet fluid temperatures, ambient temperature, water flow, direct solar radiation, and wind velocity were used as main input variables within the neural network model to estimate the thermal performance. The optimal operation conditions of parabolic trough collectors are established using the hybridization of optimization technique with neural network model to achieve optimal operation conditions of parabolic trough collector. The result indicated that methodology implemented is a feasible tool for parabolic trough collectors optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信