{"title":"重新贴标签","authors":"M. N. Bojnordi, Farhan Nasrullah","doi":"10.1145/3316781.3317895","DOIUrl":null,"url":null,"abstract":"D die-stacking has enabled energy-efficient solutions for near data processing by integrating multiple dice of high-density memory layers and processor cores within the same package. One promising approach is to employ the in-package memory as a gigascale lastlevel cache for data-intensive computing. Most existing in-package cache controllers rely on the command scheduling policies borrowed from the off-chip DRAM system. Regrettably, these control policies are not specifically tailored for in-package cache traffics, which results in a limited bandwidth efficiency. This paper proposes ReTagger, a DRAM cache controller that employs repeated tags to alleviate the cost of DRAM row buffer misses. Our simulation results on a set of ten data-intensive applications indicate an average of 20% performance improvement for the proposed controller over the state-of-the-art DRAM caches.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ReTagger\",\"authors\":\"M. N. Bojnordi, Farhan Nasrullah\",\"doi\":\"10.1145/3316781.3317895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"D die-stacking has enabled energy-efficient solutions for near data processing by integrating multiple dice of high-density memory layers and processor cores within the same package. One promising approach is to employ the in-package memory as a gigascale lastlevel cache for data-intensive computing. Most existing in-package cache controllers rely on the command scheduling policies borrowed from the off-chip DRAM system. Regrettably, these control policies are not specifically tailored for in-package cache traffics, which results in a limited bandwidth efficiency. This paper proposes ReTagger, a DRAM cache controller that employs repeated tags to alleviate the cost of DRAM row buffer misses. Our simulation results on a set of ten data-intensive applications indicate an average of 20% performance improvement for the proposed controller over the state-of-the-art DRAM caches.\",\"PeriodicalId\":391209,\"journal\":{\"name\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316781.3317895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
D die-stacking has enabled energy-efficient solutions for near data processing by integrating multiple dice of high-density memory layers and processor cores within the same package. One promising approach is to employ the in-package memory as a gigascale lastlevel cache for data-intensive computing. Most existing in-package cache controllers rely on the command scheduling policies borrowed from the off-chip DRAM system. Regrettably, these control policies are not specifically tailored for in-package cache traffics, which results in a limited bandwidth efficiency. This paper proposes ReTagger, a DRAM cache controller that employs repeated tags to alleviate the cost of DRAM row buffer misses. Our simulation results on a set of ten data-intensive applications indicate an average of 20% performance improvement for the proposed controller over the state-of-the-art DRAM caches.