生成对抗网络在乳腺癌组织病理学中的数据平衡和增强工具

Marya Ryspayeva
{"title":"生成对抗网络在乳腺癌组织病理学中的数据平衡和增强工具","authors":"Marya Ryspayeva","doi":"10.1109/SIST58284.2023.10223577","DOIUrl":null,"url":null,"abstract":"This paper explores Wasserstein Generative Adversarial Network Gradient-Penalty (WGAN-GP) for data balance in the medical domain where data scarcity and imbalance are common. The study applies Transfer Learning with pre-trained models from ImageNet on histopathological breast cancer data, both unbalanced and balanced. WGAN-GP was used to overcome the challenge of generating synthetic images to balance the data and improve the accuracy of the classification task. The highest results were shown by VGG16 with a balanced dataset by WGAN-GP in 300 epochs (95.40% accuracy, 96.56% sensitivity, 94.91% specificity). Results showed an improvement in accuracy from 84.25% to 95.40%.","PeriodicalId":367406,"journal":{"name":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Network as Data Balance and Augmentation Tool in Histopathology of Breast Cancer\",\"authors\":\"Marya Ryspayeva\",\"doi\":\"10.1109/SIST58284.2023.10223577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores Wasserstein Generative Adversarial Network Gradient-Penalty (WGAN-GP) for data balance in the medical domain where data scarcity and imbalance are common. The study applies Transfer Learning with pre-trained models from ImageNet on histopathological breast cancer data, both unbalanced and balanced. WGAN-GP was used to overcome the challenge of generating synthetic images to balance the data and improve the accuracy of the classification task. The highest results were shown by VGG16 with a balanced dataset by WGAN-GP in 300 epochs (95.40% accuracy, 96.56% sensitivity, 94.91% specificity). Results showed an improvement in accuracy from 84.25% to 95.40%.\",\"PeriodicalId\":367406,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIST58284.2023.10223577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST58284.2023.10223577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了Wasserstein生成对抗网络梯度惩罚(WGAN-GP)在医疗领域的数据平衡,其中数据稀缺和不平衡是常见的。该研究将迁移学习与来自ImageNet的预训练模型应用于组织病理学乳腺癌数据,包括不平衡和平衡。利用WGAN-GP克服了生成合成图像的难题,平衡了数据,提高了分类任务的准确率。WGAN-GP数据集平衡的VGG16在300个epoch中准确率最高(95.40%,灵敏度96.56%,特异性94.91%)。结果显示准确率由84.25%提高到95.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Network as Data Balance and Augmentation Tool in Histopathology of Breast Cancer
This paper explores Wasserstein Generative Adversarial Network Gradient-Penalty (WGAN-GP) for data balance in the medical domain where data scarcity and imbalance are common. The study applies Transfer Learning with pre-trained models from ImageNet on histopathological breast cancer data, both unbalanced and balanced. WGAN-GP was used to overcome the challenge of generating synthetic images to balance the data and improve the accuracy of the classification task. The highest results were shown by VGG16 with a balanced dataset by WGAN-GP in 300 epochs (95.40% accuracy, 96.56% sensitivity, 94.91% specificity). Results showed an improvement in accuracy from 84.25% to 95.40%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信