斯托克斯公式

C. E. Gutiérrez
{"title":"斯托克斯公式","authors":"C. E. Gutiérrez","doi":"10.1142/9789811222573_0007","DOIUrl":null,"url":null,"abstract":"Here curlnF(P) is defined as follows. Let P ∈ R3 and n be a unit vector and let S be a surface through P having normal n at P. Consider a closed curve C contained in S and circulating counterclockwise around the point P, and let A be the area of the portion of surface enclosed by C. Then curlnF(P) is the limit of the ratio between the line integral of F over C over the area of A when C shrinks to P, that is,","PeriodicalId":114943,"journal":{"name":"Basic Insights in Vector Calculus","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STOKES’ THEOREM\",\"authors\":\"C. E. Gutiérrez\",\"doi\":\"10.1142/9789811222573_0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here curlnF(P) is defined as follows. Let P ∈ R3 and n be a unit vector and let S be a surface through P having normal n at P. Consider a closed curve C contained in S and circulating counterclockwise around the point P, and let A be the area of the portion of surface enclosed by C. Then curlnF(P) is the limit of the ratio between the line integral of F over C over the area of A when C shrinks to P, that is,\",\"PeriodicalId\":114943,\"journal\":{\"name\":\"Basic Insights in Vector Calculus\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Insights in Vector Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811222573_0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Insights in Vector Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811222573_0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里,curlnF(P)的定义如下:让P∈R3和n是一个单位向量,让年代是一个表面通过P正常n P .考虑一个闭合曲线C包含在点P, S和循环逆时针,让一个被包围的部分表面的面积C .然后curlnF之间的比率(P)限制F的线积分/ C / C P,收缩时的面积,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STOKES’ THEOREM
Here curlnF(P) is defined as follows. Let P ∈ R3 and n be a unit vector and let S be a surface through P having normal n at P. Consider a closed curve C contained in S and circulating counterclockwise around the point P, and let A be the area of the portion of surface enclosed by C. Then curlnF(P) is the limit of the ratio between the line integral of F over C over the area of A when C shrinks to P, that is,
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信