{"title":"镶嵌:在一台机器上处理一万亿边图","authors":"Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, Taesoo Kim","doi":"10.1145/3064176.3064191","DOIUrl":null,"url":null,"abstract":"Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.","PeriodicalId":262089,"journal":{"name":"Proceedings of the Twelfth European Conference on Computer Systems","volume":"82 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Mosaic: Processing a Trillion-Edge Graph on a Single Machine\",\"authors\":\"Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, Taesoo Kim\",\"doi\":\"10.1145/3064176.3064191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.\",\"PeriodicalId\":262089,\"journal\":{\"name\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"volume\":\"82 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064176.3064191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064176.3064191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mosaic: Processing a Trillion-Edge Graph on a Single Machine
Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.