镶嵌:在一台机器上处理一万亿边图

Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, Taesoo Kim
{"title":"镶嵌:在一台机器上处理一万亿边图","authors":"Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, Taesoo Kim","doi":"10.1145/3064176.3064191","DOIUrl":null,"url":null,"abstract":"Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.","PeriodicalId":262089,"journal":{"name":"Proceedings of the Twelfth European Conference on Computer Systems","volume":"82 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":"{\"title\":\"Mosaic: Processing a Trillion-Edge Graph on a Single Machine\",\"authors\":\"Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, Taesoo Kim\",\"doi\":\"10.1145/3064176.3064191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.\",\"PeriodicalId\":262089,\"journal\":{\"name\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"volume\":\"82 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"158\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064176.3064191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064176.3064191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158

摘要

最近,在数十到数百个节点的集群上运行的分布式图引擎已经展示了处理一万亿边图的能力。在本文中,我们采用了一个具有快速存储介质(例如NVMe SSD)和大规模并行协处理器(例如Xeon Phi)的单一异构机器来达到类似的尺寸。在充分利用异构设备的基础上,我们设计了一种新的单机图形处理引擎Mosaic。我们提出了一种新的位置优化,空间高效的图形表示-希尔伯特有序图,以及一种混合执行模型,该模型可以在快速主机处理器中实现以顶点为中心的操作,并在大规模并行协处理器中实现以边缘为中心的操作。我们的评估表明,对于较小的图,Mosaic的性能始终优于其他最先进的核心外引擎3.2-58.6倍,并且显示出与分布式图引擎相当的性能。此外,Mosaic可以在21分钟内完成对万亿边图的Pagerank算法的一次迭代,比基于分布式磁盘的引擎性能高出9.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mosaic: Processing a Trillion-Edge Graph on a Single Machine
Processing a one trillion-edge graph has recently been demonstrated by distributed graph engines running on clusters of tens to hundreds of nodes. In this paper, we employ a single heterogeneous machine with fast storage media (e.g., NVMe SSD) and massively parallel coprocessors (e.g., Xeon Phi) to reach similar dimensions. By fully exploiting the heterogeneous devices, we design a new graph processing engine, named Mosaic, for a single machine. We propose a new locality-optimizing, space-efficient graph representation---Hilbert-ordered tiles, and a hybrid execution model that enables vertex-centric operations in fast host processors and edge-centric operations in massively parallel coprocessors. Our evaluation shows that for smaller graphs, Mosaic consistently outperforms other state-of-the-art out-of-core engines by 3.2-58.6x and shows comparable performance to distributed graph engines. Furthermore, Mosaic can complete one iteration of the Pagerank algorithm on a trillion-edge graph in 21 minutes, outperforming a distributed disk-based engine by 9.2×.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信