火电厂蒸汽管道焊接接头的结构、相位状况及易损性

V. Dmitrik, I. Kasyanenko, Alexandr Krakhmalyov
{"title":"火电厂蒸汽管道焊接接头的结构、相位状况及易损性","authors":"V. Dmitrik, I. Kasyanenko, Alexandr Krakhmalyov","doi":"10.20998/2078-774x.2021.04.09","DOIUrl":null,"url":null,"abstract":"The authors studied the interrelation between the type of structure and the damage rate of the welded joints of steam pipelines made of the heat-resistant pearlitic steels that were operated for a long time, i.e. more than 270 thousand hours in the conditions of creepage and low-cycle fatigue. The purpose of this research was to establish the interrelation between the structural-&-phase condition of the metal used for welded joints of the elements of steam systems and their damageability rate for the service life of welded joints exceeding 270 thousand hours. During the studies, the methods of optical and electron microscopy were used according to the requirements of the guideline documentation and also the methods that are used for the determination of mechanical properties. The level of their reliability has been substantiated and the residual life has been determined. To impart functional performances to welded joints we used well-known methods that were appropriately emended according to the structural changes of above joints. Such changes condition the conversion of the original structure of welded joints into the ferrite-carbide mixture. The availability of the conversion process of the initial structure on the thermal action zone sections (TAZ) of welded joints has essential distinctions due to a different disposition of metal to its own damageability. On the whole, the welded joints are damaged more intensively in comparison to the basic metal of steam pipelines. The analysis of the structural state of welded joints in the steam pipelines of thermal power plants as for the extension of their service life results in a considerable economic effect. Understanding the fact that the metal deterioration in welded joints adheres mainly to the fragile mechanism we managed to establish the level of their damageability that demands the renewal of damaged welded joints. We believe that the damageability level of welded joints that tots up to 0.25 or 0.35 of the volume of their TAZ section should be considered as critical for the service life exceeding 270 thousand hours. The damaged welded joints should be renewed throughout the time period of 15 to 20 thousand hours as soon as the specified damageability level is attained.","PeriodicalId":416126,"journal":{"name":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural-&-Phase Condition and the Damageability of the Welded Joints of Steam Pipelines at Thermal Power Plants\",\"authors\":\"V. Dmitrik, I. Kasyanenko, Alexandr Krakhmalyov\",\"doi\":\"10.20998/2078-774x.2021.04.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors studied the interrelation between the type of structure and the damage rate of the welded joints of steam pipelines made of the heat-resistant pearlitic steels that were operated for a long time, i.e. more than 270 thousand hours in the conditions of creepage and low-cycle fatigue. The purpose of this research was to establish the interrelation between the structural-&-phase condition of the metal used for welded joints of the elements of steam systems and their damageability rate for the service life of welded joints exceeding 270 thousand hours. During the studies, the methods of optical and electron microscopy were used according to the requirements of the guideline documentation and also the methods that are used for the determination of mechanical properties. The level of their reliability has been substantiated and the residual life has been determined. To impart functional performances to welded joints we used well-known methods that were appropriately emended according to the structural changes of above joints. Such changes condition the conversion of the original structure of welded joints into the ferrite-carbide mixture. The availability of the conversion process of the initial structure on the thermal action zone sections (TAZ) of welded joints has essential distinctions due to a different disposition of metal to its own damageability. On the whole, the welded joints are damaged more intensively in comparison to the basic metal of steam pipelines. The analysis of the structural state of welded joints in the steam pipelines of thermal power plants as for the extension of their service life results in a considerable economic effect. Understanding the fact that the metal deterioration in welded joints adheres mainly to the fragile mechanism we managed to establish the level of their damageability that demands the renewal of damaged welded joints. We believe that the damageability level of welded joints that tots up to 0.25 or 0.35 of the volume of their TAZ section should be considered as critical for the service life exceeding 270 thousand hours. The damaged welded joints should be renewed throughout the time period of 15 to 20 thousand hours as soon as the specified damageability level is attained.\",\"PeriodicalId\":416126,\"journal\":{\"name\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NTU \\\"KhPI\\\" Bulletin: Power and heat engineering processes and equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2078-774x.2021.04.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU \"KhPI\" Bulletin: Power and heat engineering processes and equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2078-774x.2021.04.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了高温珠光体钢蒸汽管道在爬电和低周疲劳条件下长时间运行27万小时以上的结构类型与焊接接头损伤率之间的关系。本研究的目的是建立蒸汽系统元件焊接接头所用金属的结构-相状态与焊接接头使用寿命超过27万小时时的易损率之间的相互关系。在研究过程中,根据指南文件的要求,使用光学和电子显微镜的方法,以及用于测定机械性能的方法。对其可靠性水平进行了验证,并确定了其剩余寿命。为了赋予焊接接头功能性能,我们采用了众所周知的方法,并根据上述接头的结构变化进行了适当的修正。这种变化使焊接接头的原始结构转变为铁素体-碳化物混合物。初始结构在焊接接头热作用区截面(TAZ)上的转换过程的可用性由于金属的不同处置对其自身的损伤性有本质的区别。总的来说,与蒸汽管道的基本金属相比,焊接接头的损伤更严重。对火电厂蒸汽管道焊接接头的结构状态进行分析,以延长蒸汽管道的使用寿命,具有可观的经济效益。了解焊接接头中的金属劣化主要遵循脆性机制这一事实后,我们设法建立了要求更新损坏焊接接头的可损伤性水平。我们认为,对于超过27万小时的使用寿命而言,焊接接头的可损伤性水平总计达到其TAZ部分体积的0.25或0.35,应被视为关键。一旦达到规定的损伤等级,应在15000 ~ 20000小时内对损坏的焊接接头进行更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural-&-Phase Condition and the Damageability of the Welded Joints of Steam Pipelines at Thermal Power Plants
The authors studied the interrelation between the type of structure and the damage rate of the welded joints of steam pipelines made of the heat-resistant pearlitic steels that were operated for a long time, i.e. more than 270 thousand hours in the conditions of creepage and low-cycle fatigue. The purpose of this research was to establish the interrelation between the structural-&-phase condition of the metal used for welded joints of the elements of steam systems and their damageability rate for the service life of welded joints exceeding 270 thousand hours. During the studies, the methods of optical and electron microscopy were used according to the requirements of the guideline documentation and also the methods that are used for the determination of mechanical properties. The level of their reliability has been substantiated and the residual life has been determined. To impart functional performances to welded joints we used well-known methods that were appropriately emended according to the structural changes of above joints. Such changes condition the conversion of the original structure of welded joints into the ferrite-carbide mixture. The availability of the conversion process of the initial structure on the thermal action zone sections (TAZ) of welded joints has essential distinctions due to a different disposition of metal to its own damageability. On the whole, the welded joints are damaged more intensively in comparison to the basic metal of steam pipelines. The analysis of the structural state of welded joints in the steam pipelines of thermal power plants as for the extension of their service life results in a considerable economic effect. Understanding the fact that the metal deterioration in welded joints adheres mainly to the fragile mechanism we managed to establish the level of their damageability that demands the renewal of damaged welded joints. We believe that the damageability level of welded joints that tots up to 0.25 or 0.35 of the volume of their TAZ section should be considered as critical for the service life exceeding 270 thousand hours. The damaged welded joints should be renewed throughout the time period of 15 to 20 thousand hours as soon as the specified damageability level is attained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信