{"title":"一种新的HEp-2细胞图像分割自适应局部阈值分割方法","authors":"Xiande Zhou, Yuexiang Li, L. Shen","doi":"10.1109/SIPROCESS.2016.7888247","DOIUrl":null,"url":null,"abstract":"The patterns of Human Epithelial type 2 (HEp-2) cell provide useful information for the diagnosis of systemic autoimmune diseases. However, the recognition of cell patterns requires manual annotation by experienced physicians, which is subject to inter-observer variability. Therefore, an automatic diagnosis system is desirable. As the crucial pre-processing step for cell pattern recognition, the performance of cell segmentation is crucial. In this paper, a novel adaptive local thresholding approach is proposed to solve the issue. The approach divides cell images into overlapping sub-images and applies adaptive threshold estimator to each of them. The ICPR 2014 HEp-2 cell datasets are employed to assess the segmentation performance of our framework. The results show that the system achieves an average segmentation accuracy of 66.95%, which outperforms the typical thresholding approaches.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A novel adaptive local thresholding approach for segmentation of HEp-2 cell images\",\"authors\":\"Xiande Zhou, Yuexiang Li, L. Shen\",\"doi\":\"10.1109/SIPROCESS.2016.7888247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The patterns of Human Epithelial type 2 (HEp-2) cell provide useful information for the diagnosis of systemic autoimmune diseases. However, the recognition of cell patterns requires manual annotation by experienced physicians, which is subject to inter-observer variability. Therefore, an automatic diagnosis system is desirable. As the crucial pre-processing step for cell pattern recognition, the performance of cell segmentation is crucial. In this paper, a novel adaptive local thresholding approach is proposed to solve the issue. The approach divides cell images into overlapping sub-images and applies adaptive threshold estimator to each of them. The ICPR 2014 HEp-2 cell datasets are employed to assess the segmentation performance of our framework. The results show that the system achieves an average segmentation accuracy of 66.95%, which outperforms the typical thresholding approaches.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel adaptive local thresholding approach for segmentation of HEp-2 cell images
The patterns of Human Epithelial type 2 (HEp-2) cell provide useful information for the diagnosis of systemic autoimmune diseases. However, the recognition of cell patterns requires manual annotation by experienced physicians, which is subject to inter-observer variability. Therefore, an automatic diagnosis system is desirable. As the crucial pre-processing step for cell pattern recognition, the performance of cell segmentation is crucial. In this paper, a novel adaptive local thresholding approach is proposed to solve the issue. The approach divides cell images into overlapping sub-images and applies adaptive threshold estimator to each of them. The ICPR 2014 HEp-2 cell datasets are employed to assess the segmentation performance of our framework. The results show that the system achieves an average segmentation accuracy of 66.95%, which outperforms the typical thresholding approaches.