运动场地登记的自监督形状对准

F. Shi, P. Marchwica, J. A. G. Higuera, Michael Jamieson, Mehrsan Javan, P. Siva
{"title":"运动场地登记的自监督形状对准","authors":"F. Shi, P. Marchwica, J. A. G. Higuera, Michael Jamieson, Mehrsan Javan, P. Siva","doi":"10.1109/WACV51458.2022.00382","DOIUrl":null,"url":null,"abstract":"This paper presents an end-to-end self-supervised learning approach for cross-modality image registration and homography estimation, with a particular emphasis on registering sports field templates onto broadcast videos as a practical application. Rather then using any pairwise labelled data for training, we propose a self-supervised data mining method to train the registration network with a natural image and its edge map. Using an iterative estimation process controlled by a score regression network (SRN) to measure the registration error, the network can learn to estimate any homography transformation regardless of how misaligned the image and the template is. We further show the benefits of using pretrained weights to finetune the network for sports field calibration with few training data. We demonstrate the effectiveness of our proposed method by applying it to real-world sports broadcast videos where we achieve state-of-the-art results and real-time processing.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Self-Supervised Shape Alignment for Sports Field Registration\",\"authors\":\"F. Shi, P. Marchwica, J. A. G. Higuera, Michael Jamieson, Mehrsan Javan, P. Siva\",\"doi\":\"10.1109/WACV51458.2022.00382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an end-to-end self-supervised learning approach for cross-modality image registration and homography estimation, with a particular emphasis on registering sports field templates onto broadcast videos as a practical application. Rather then using any pairwise labelled data for training, we propose a self-supervised data mining method to train the registration network with a natural image and its edge map. Using an iterative estimation process controlled by a score regression network (SRN) to measure the registration error, the network can learn to estimate any homography transformation regardless of how misaligned the image and the template is. We further show the benefits of using pretrained weights to finetune the network for sports field calibration with few training data. We demonstrate the effectiveness of our proposed method by applying it to real-world sports broadcast videos where we achieve state-of-the-art results and real-time processing.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"340 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种端到端的自监督学习方法,用于跨模态图像配准和单应性估计,并特别强调将运动场模板注册到广播视频中作为实际应用。我们提出了一种自监督数据挖掘方法来训练配准网络,而不是使用任何成对标记的数据进行训练。利用分数回归网络(SRN)控制的迭代估计过程来测量配准误差,该网络可以学习估计任何单应性变换,而不管图像和模板的错位程度如何。我们进一步展示了使用预训练权值来微调网络的好处,以便在训练数据较少的情况下进行运动场校准。我们通过将其应用于现实世界的体育广播视频来证明我们提出的方法的有效性,我们实现了最先进的结果和实时处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Shape Alignment for Sports Field Registration
This paper presents an end-to-end self-supervised learning approach for cross-modality image registration and homography estimation, with a particular emphasis on registering sports field templates onto broadcast videos as a practical application. Rather then using any pairwise labelled data for training, we propose a self-supervised data mining method to train the registration network with a natural image and its edge map. Using an iterative estimation process controlled by a score regression network (SRN) to measure the registration error, the network can learn to estimate any homography transformation regardless of how misaligned the image and the template is. We further show the benefits of using pretrained weights to finetune the network for sports field calibration with few training data. We demonstrate the effectiveness of our proposed method by applying it to real-world sports broadcast videos where we achieve state-of-the-art results and real-time processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信